
Resource Race Attacks on Android
Yan Cai

State Key Laboratory of Computer Science
Institute of Software

Chinese Academy of Sciences
Beijing, China

ycai.mail@gmail.com

Yutian Tang
Hong Kong Polytechnic University

Hong Kong, China
csytang@comp.polyu.edu.hk

Haicheng Li
State Key Laboratory of Computer Science

Institute of Software
Chinese Academy of Sciences and

University of Chinese Academy of Sciences
Beijing, China
lihc@ios.ac.cn

Le Yu
Hong Kong Polytechnic University

Hong Kong, China
cslyu@comp.polyu.edu.hk

Hao Zhou
Hong Kong Polytechnic University

Hong Kong, China
cshaoz@comp.polyu.edu.hk

Xiapu Luo
Hong Kong Polytechnic University

Hong Kong, China
csxluo@comp.polyu.edu.hk

Liang He
Trust Computing Assurance, Institute of Software

Chinese Academy of Sciences
Beijing, China

heliang@iscas.ac.cn

Purui Su
TCA/SKLCS, Institute of Software, Chinese Academy of Sciences
Cyberspace Security Research Center, Peng Cheng Laboratory

Shenzhen 518000, and
School of Cyber Security, University of Chinese Academy of Sciences

China
purui@iscas.ac.cn

Abstract—Smartphones are frequently involved in accessing
private user data. Although many studies have been done to
prevent malicious apps from leaking private user data, only a few
recent works examine how to remove the sensitive information
from the data collected by smartphone hardware resources (e.g.,
camera). Unfortunately, none of them investigates whether a
malicious app can obtain such sensitive information when (or
right before/after) a legitimate app collects such data (e.g., taking
photos). To fill in the gap, in this paper, we model such attacks
as the Resource Race Attack (RRAttack) based on races between
two apps during their requests to exclusive resources to access
sensitive information. RRAttacks have three categories according
to when a race on requesting resources occurs: Pre-Use, In-Use,
and Post-Use attacks. We further conduct the first systematic
study on the feasibility of launching the RRAttacks on two heavily
used exclusive Android resources: camera and touchscreen. In
details, we perform Proof-of-Concept (PoC) attacks to reveal that,
(a) camera is highly vulnerable to both In-Use and Post-Use
attacks; and (b) touchscreen is vulnerable to Pre-Use attacks.
Particularly, we demonstrate successful RRAttacks on them to
steal private information, to cause financial loss, and to steal user
passwords from Android 6 to the latest Android Q. Moreover, our
analyses on 1,000 apps indicate that most of them are vulnerable
to one to three RRAttacks. Finally, we propose a set of defense
strategies against RRAttacks for user apps, system apps, and
Android system itself.

Index Terms—Resource Race, Android Privacy, Camera,
Touchscreen

I. INTRODUCTION

Smartphones have various hardware resources such as cam-
eras and sensors (e.g., GPS), which can be utilized by apps
to provide various services to users (e.g., navigation services).

As a result, the use of such resources directly involves private
user data; and hence, these resources should be well managed.

Android system offers APIs for developers to operate these
resources so that developers could determine when and how
to utilize a resource. Firstly, this can lead developers to focus
more on the functionality but less on the management of these
resources, resulting in many bugs (e.g., resource leak which
can cause performance degradation and even system crash [1]).
Secondly, malicious apps can access to these resources and
tamper with private user data, causing security threats [2]–[4].
There have been many works to detect and fix resource leaks
[5]–[7] and to detect malicious apps [8]–[12].

Unfortunately, no existing work systematically investigates
possible attacks on Android via races on exclusive resources,
where an exclusive resource (e.g., a camera) can only be
accessed by one app. A race occurs when there are two or
more concurrent accesses to the same resource [13], [14].
There have been many such kinds of vulnerabilities [15] like
DirtyCow (CVE-2016-5195) which can be exploited to gain
root privilege for non-root users. Unfortunately, by causing a
race on Android resources, an attacker can also launch many
types of attacks as demonstrated in this paper.

We define a Resource Race on Android as two concurrent
requests to an exclusive resource. For example, according to
the API of Camera2 [16], multiple apps can request the same
camera at the same time (and the one with a higher priority
will be granted to use the camera). That is, there is a race
on use of Android cameras. Besides, camera is a preemptive
resource. During the use of a camera by an app, a malicious
app may preempt the camera without causing any interruption

to victim apps. Of course, a preemption on a camera may not
bring any security threats but only disturbs user experience;
however, considering the environment involved in the camera
(i.e., camera view), once there is any private information faced
by a camera, security challenges become the first issue to be
considered. In other words, considering a camera and its view
(e.g., a QR code representing some private information), it may
leak user private data when a gained camera is preempted by a
malicious app. Besides, a malicious app may also monitor the
camera usage and open it immediately after an app releases
it. If the camera view remains on the object of interest,
the malicious app can launch such attacks by capturing the
sensitive information in the camera view.

Considering both environment and resources, we generalize
Resource Race definition as: two requests to an exclusive
resource where the two requests are performed either concur-
rently or one immediately after another. The latter condition
considers two more cases: an app can raise a race on a resource
right before another app requests it or right after another app
releases it. Then, if an attack can be launched by raising a
resource race, we call this attack a Resource Race Attack (or
RRAttack for short). According to the time to raise a race,
we propose three basic RRAttack models: Pre-Use attack, In-
Use attack, and Post-Use attack. The Pre-Use attack refers to
an RRAttack that raises a resource race right before an app
requests a resource; the In-Use attack refers to an RRAttack
that raises a resource race when the resource is in use; and the
Post-Use attack refers to an RRAttack that raises a resource
race right after an app releases the resource. We will elaborate
more on these attacks in Section II.

In this paper, we conduct the first systematic study on the
feasibility of launching RRAttacks on exclusive resources on
Android. After analyzing all possible exclusive resources and
their management, we successfully identified two resources
that are vulnerable to at least one kind of RRAttacks, i.e.,
cameras and touchscreens. After examining the design of
related Android APIs, we conduct proof-of-concept (PoC)
attacks to reveal that, (a) camera is highly vulnerable to both
In-Use and Post-Use attacks; (b) touchscreen is vulnerable to
Pre-Use attacks where a malicious app can create Android
windows to catch user inputs. In particular, we demonstrate
that RRAttacks can steal private information, cause financial
loss, and steal user passwords starting from Android 6 until the
latest Android 10 (Q), even though Android Q is designed to
provide better privacy protection (e.g., disabling camera usage
for background apps [17]).

We further study whether existing apps are vulnerable to
RRAttacks and use any protection mechanisms by developing
a static analysis tool to inspect 1,000 Android apps. The result
shows that, among 337 apps that actually use cameras, 90
apps (26.7%) are vulnerable to Pre-Use attacks on camera and
104 apps (30.9%) are vulnerable to In-Use attacks on camera.
Besides, among 224 apps that require passwords (at Login
activities), only one is invulnerable to Pre-Use attacks on
touchscreen. Besides, more than 81.0% apps that use camera
or require password adopt no protection against RRAttacks.

We have reported our RRAttacks to Android Security Team
(issue tracker ID: 79652976). Based on our investigation and
the experiment results, we find that some of these attacks (e.g.,
the one explained in Section IV-C) cannot be defended at user
app level. Hence, we claim that, there are several design
defects in Android system, which together contribute to
RRAttacks, although each separate design does not intro-
duce vulnerability. Therefore, we propose a set of suggestions
to defend against RRAttacks for apps and Android system.

In summary, the major contributions of this paper are:
• We conduct the first systematic study on Resource Race

Attacks (RRAttacks) on Android and model three kinds
of RRAttacks.

• We reveal that two popular resources on Android are
vulnerable to at least one of RRAttacks by (1) inves-
tigating the internals of Android system and APIs and
(2) conducting successful proof-of-concept attacks on
real-world popular apps on several Android platforms,
including the latest Android 10 (Q).

• We develop a static analysis tool to check whether ex-
isting apps are vulnerable to RRAttacks and employ any
protection mechanisms. The results on 1,000 apps show
that many apps are vulnerable to RRAttacks and none
adopts protection mechanisms. Therefore, we further pro-
pose a set of defense suggestions against RRAttacks.

In the rest of this paper, Section II presents the model
of RRAttacks in details and discusses possible resources
vulnerable to RRAttacks. Sections III and IV show a set of
real-world attacks on camera and touchscreen, respectively.
Section V presents a study on 1,000 apps against three kinds
of RRAttacks. Section VI presents a set of suggestions for
defending against RRAttacks. After introducing the related
works in Section VII, we conclude the paper in Section VIII.

II. RRATTACK MODELS AND SCENARIOS

A. Why Launching Attacks via Resource Race?

Different from existing attacks on Android (see Section
VII), RRAttacks exploit resource races that directly involve
highly intensive user interactions and, hence, involve more
private information. For example, there will be a higher
probability to capture a photo containing private data when
a user is taking photos than at other time (e.g., when the
camera is idle). In such scenarios, if any race exists and can
be exploited, it will cause severe threats. Hence, RRAttacks
should also be well studied.

B. Basic Assumptions

In this paper, we focus on races among exclusive resources.
A race involves two running apps: one victim app and one
malicious app. We assume that both kinds of apps have
permissions to access certain Android resources (e.g., camera).
We will list permissions required by each RRAttack. Actually,
a malicious app can gain permissions relatively easily as users
tend to give to an app all the permissions it requests, especially
if the app "justifies" its request reasonably. Besides, there are
works on how to gain permissions for malicious apps [2], [18].

Environment X

Res

t1 t4

t3

Close

Time

vApp

mAPP

Time

t2

Environment X

Res

t0

t2

Time

vApp

mAPP

Time

t1

Close

(a) Pre-Use Attack (b) In-Use Attack (c) Post-Use Attack

Environment X

Res

t1 t2

∆t = t3 - t2

t3

Time

vApp

mAPP

Time

C
lo

se

Fig. 1. Three Basic RRAttack Models.

C. Three Attack Models

As explained in Section I, a resource race can be raised
in one of three stages. Accordingly, we propose three basic
attack models of RRAttack as shown in Figure 1. To simplify
our explanation, we use vApp (i.e., victimApp) to denote a
user app that opens and closes a resource Res to interact with
the environment X . We use mApp to denote a malicious app.
The three attack models include:

• Pre-Use Attack. Suppose that vApp will request a re-
source Res at time t1 to interact with environment X
and this becomes known to mApp. To launch the Pre-Use
attack, mApp will firstly request the resource at time t0,
prior to the request by vApp. During the period from t0
to t1, mApp quickly captures X and then releases Res
without disturbing the behavior of vApp. If X is clearly
captured, mApp can steal any private information in X .

• In-Use Attack. This attack involves preemptive resource.
That is, when mApp learns that vApp is holding a Res,
mApp can preempt Res to quickly capture X and then
release Res. This attack requires that, after the preemp-
tion on Res by mApp, vApp should behave normally
(e.g., not crashed). Moreover, the period ∆t = t2 − t1
should be short enough.

• Post-Use Attack. In this attack, mApp gains the resource
Res right after vApp releases it. If the environment X is
still available to the resource, mApp can quickly capture
the environment.

The three basic models rely on the knowledge of resource
usages including when to request, to use, and to release them.
A basic and direct requirement is that, a malicious app is able
to conduct a quick but short gain on a resource to capture any
environment. Further, based on one to three above attacks,
attackers can launch sophisticated attacks over a single or
multiple resources.

However, various constraints may exist from one smart-
phone to another for success attacks. We will discuss them
and also show several cases in the rest of this paper, including
real-world attacks causing financial loss.

D. Resources Vulnerable to RRAttacks

Camera. Cameras are involved in many scenarios in our
daily lives (e.g., taking a photo, scanning a QR code). RRAt-
tack on a camera can cause severe effects such as privacy

violations. For example, when a user is scanning a ticket,
a malicious app can launch an RRAttack to capture the
information on the ticket.

According to our investigation and experiment, both In-Use
and Post-Use attacks can be easily launched on cameras.

Touchscreen. Touchscreen provides direct interactions be-
tween users and apps, such as typing a password. If any
RRAttack can be launched during user touches, it can cause
severe information leaks, e.g., passwords.

According to our analysis of Android event dispatching
and Android Architecture components, Pre-Use attacks can be
launched on touchscreens. The corresponding RRAttacks will
be presented in Section IV. Fortunately, it may be difficult to
launch either In-Use or Post-Use attacks on touchscreens.

Others. Other resources may also be vulnerable to RRAt-
tacks. For example, microphones are usually a kind of exclu-
sive resource. Hence, it is difficult to launch either Pre-Use or
In-Use attacks. However, microphones can suffer from Post-
Use attacks by immediately opening a microphone to record
sounds after it is released by a victim app. In this case, the
recorded sound may contain confidential information (e.g.,
right after a business phone meeting).

III. RRATTACKS ON CAMERA

Camera is one of the most important resources on smart-
phones that can directly capture private data like our faces.
Unfortunately, based on our investigation, with only a few
carefully designed steps, a malicious app can easily launch
RRAttacks on cameras, especially In-Use attacks and Post-
Use attacks. We present a technical analysis and then present
our implementation and an experiment to validate both In-Use
and Post-Use attacks. Note that, Pre-Use attacks on cameras
become feasible if one can know in advance when a camera
will be opened.

A. Experiment Design

Firstly, to conduct In-Use attacks and Post-Use attacks, we
have to precisely monitor camera open and release, respec-
tively. Fortunately, Camera2 provides two exact listener APIs
(onCameraUnavailable() and onCameraAvailable()).
These two callbacks are called right after an app opens a
camera and right after an app releases a camera, respectively.

The next challenge is how to successfully open a camera
after being notified from two listeners. We firstly consider

(a) (b)

ETKT 2205736899715

(c) (d)

Fig. 2. Two Tickets and Our Experiment Snapshots.

In-Use attacks on camera. From the source code of the
openCamera() API, we found that it depends on whether
the process (hosting the app) owns the highest user priority.
Hence, to launch RRAttack, we have to enable our malicious
app to have a highest user priority. This is resolved by creating
a new foreground activity which automatically obtains the
highest priority among user apps. And the activity should not
be aware to users (e.g., creating a transparent activity).

After gaining access to an in-use camera, we quickly take
several photos, release the camera, and kill the activity. Post-
Use attacks can be conducted by following the same steps.

Note that, the most recently released Android Q (released
in Sep 2019) forbids any background apps to open a camera
[17]. However, we only open a camera in a newly created fore-
ground activity, which does not violate this security strategy.

B. Experiment Validation

We have developed a malicious app RRACAM to monitor
cameras based on Camera2 APIs. It is designed as a service
with two modes, corresponding to In-Use attack and Post-Use
attack. In both modes, after opening the camera, RRACAM

immediately captures 10 photos and then releases it. Of course,
RRACAM is expected to have CAMERA permission.

Our experiment is conducted on three Android phones:
Huawei Mate 10, LG Nexus 5x, and Google Pixel. They were
released in 2013 to 2017, and are installed with Android 7, 6,
and Android P and the latest Android Q, respectively. Note,
our experiment result on Google Pixel installed with Android
P and Q are almost the same; we only report the experimental
data below from Android Q.

To firstly validate whether a malicious app can get accurate
photos under three attacks, we installed our malicious app
RRACAM on three phones and launched two apps (the default
camera app on each phone and a QR code scanner [19])
to scan an airline ticket and a train ticket, respectively. The
former contains private text information and the latter contains
a QR code (see Figure 2). There are totally 12 groups of
experiments. We invited a user to take a photo on the air ticket
and to scan the QR code on the train ticket.

Surprisingly, our experiment shows that in all 12 groups of
attacks, RRACAM successfully took clear photos. The only
difference is that, on different phones, it took different lengths
of time to take the first recognizable photos (see Figure 3).

0.7 0.62
1.4 1.6 1.3

2.1

0.86 0.57
0.93 0.65

3.1

1.1

0

1

2

3

4

Camera Scanner Camera Scanner Camera Scanner

Huawei Mate 10
(Oct. 2017, Android 7)

LG Nexus 5x
(Oct. 2013, Android 6)

Google Pixel
(Jun. 2016, Android Q)

Ti
m

e
(s

ec
o

n
d

) In-Use Post-Use

Fig. 3. Time to Take the First Recognizable Photos.

Figure 4 shows photos taken by RRACAM (only showing
the ETKT NO and the QR code in Figure 2 for experiment
purpose) and the time cost. We use 3to indicate photos
whether all the texts and QR data can be precisely recognized
by an online OCR tool [20] and the QR Code Reader [19],
respectively. Although RRACAM actually took 10 photos, we
only show the first five on the first two phones (as at least two
of them are recognizable). For Google Pixel, we omit the 2nd
to the 6th photos as they are not recognized.

From Figure 4 and Figure 3, we see that, on Huawei Mate
10, it took 0.6 to 0.9 seconds to capture a recognizable photo
in both In-Use and Post-Use attacks; on LG Nexus 5x, the
cost is from 0.65 to 1.6 seconds; and on Google Pixel, the
cost is from 1.1 to 2.1 seconds, except the Post-Use attack in
taking photos on air ticket where it cost 3.1 seconds.

In summary, the experiment demonstrates that In-Use and
Post-Use attacks on cameras are feasible in practice; they took
less than 1.5s for most cases (9/12) (on average, 1.3 seconds).

C. Real-world Attacks
We could identify several scenarios using payments with

QR codes in the two most popular social apps in China,
i.e., WeChat and QQMobile. Both have the same approach to
distribute money as Red Packet (or Red Envelope): one user
offers a Red Packet containing an amount of money and this
Red Packet is represented by a static QR code. Other accounts
can scan this QR code (via the same app) to obtain a random
amount of money. The key is that, any user, once owning the
QR code, can obtain money until no money is left.

TABLE I
RRATTACK RESULTS ON CAMERA (WECHAT AND QQ).

WeChat
(Static QR)

WeChat
(Dynamic QR)

QQ
(Mobile)

In-Use Attack 3 3 3
Post-Use Attack 3 7 3

To verify whether RRAttacks can be combined with above
procedure, we set up such a scenario and launched RRAttack
when WeChat scans the QR code based on the experiment
setup in Section III-B. We invited a third user to scan the QR
code captured by our RRACAM from the server (to simulate
an automated attack). The result is as expected, the third user
obtained a random amount of money. And WeChat involved
in the RRAttack was not aware of either the use of camera by
RRACAM or the "stealing" of money during RRAttacks. We
launched the same attack on QQMobile’s Red Packet.

We realized in April 2018 that the distribution strategy of
Red Packet on WeChat has been enhanced: it regenerates a

In
-U

se

A
tt

ac
k

726ms

809ms

842ms

880ms

918ms

718ms

795ms

829ms

861ms

893ms

620ms 689ms 729ms 768ms 807ms

505ms 574ms 607ms 642ms 675ms

1199ms

1393ms

1566ms

1778ms

1965ms

762ms

925ms

1126ms

1331ms

1531ms

1387ms 1580ms 1781ms 1986ms 2183ms

481ms 648ms 846ms 1049ms 1253ms

Five omitted.

828ms

1212ms

1281ms

1327ms

1407ms

1668ms 2062ms 2103ms 2159ms 2258ms

Five
omitted.

Five
omitted.

P
o

st
-U

se

A
tt

ac
k

In
-U

se

A
tt

ac
k

P
o

st
-U

se

A
tt

ac
k

In
-U

se

A
tt

ac
k

P
o

st
-U

se

A
tt

ac
k

In-Use Attack Post-Use Attack

H
u

aw
e

i M
at

e
 1

0
(A

n
d

ro
id

 7
)

LG
 N

e
xu

s
5

x
(A

n
d

ro
id

 6
)

G
o

o
gl

e
 P

ix
e

l
(A

n
d

ro
id

 Q
)

In-Use Attack Post-Use Attack

In-Use Attack Post-Use Attack

Five omitted.

697ms 1068ms 1109ms 1165ms 1266ms

2695ms

3083ms

3123ms

3182ms

3281ms

Fig. 4. Results of In-Use and Post-Use Attacks on Three Cameras.

different QR code after a user scans and obtains money from a
Red Packet. This makes Post-Use attacks failed as RRACAM

gets an invalid QR code. However, In-Use attack still works
and we have successfully verified this (see Table I).

IV. RRATTACKS ON TOUCHSCREEN

A. RRAttack Scenarios on Touchscreens

RRAttacks on touchscreen involve a resource race on user’s
touches (or touch events) on touchscreen rather than taking
touchscreen as a resource. According to the design of Android,
one way to launch attacks is to create an Android window [2]
to catch user touches and then infer user interaction with
the underlying app. Such windows, also known as floating
windows or overlays, are different from activities in terms of
their responsibilities. Activities are essential components of
apps and are responsible for interacting with users [21] while
windows are used for placing and presenting views of apps.
We first briefly introduce the mechanism for capturing user
touches and then describe our attack.

B. Exploitable Design

An app can create one or more windows (i.e., overlays)
of customized size and display them above other activi-
ties. By default, user touches can be captured by these
windows. However, a window can be configured to ignore
any user touches by setting the flag FLAG_NOT_TOUCHABLE.
Thus, any touch inside the window will be delivered to
the underlying windows or activities. Moreover, if the flag
FLAG_WATCH_OUTSIDE_TOUCH is set, the window will re-
ceive a MotionEvent.ACTION_OUTSIDE event which im-
plies that a user touch event is consumed by another
window. The permission required to create the overlay is
SYSTEM_ALERT_WINDOW and the type of the overlay window
is different for different versions of Android (see Table II).

Multiple windows can exist simultaneously, and each of
which will be assigned a unique z-order value. Any win-
dow setting the flags FLAG_WATCH_OUTSIDE_TOUCH and

TABLE II
TYPES OF THE WINDOW REQUIRED BY RRATS1 .

Version < Android O (8.0) TYPE_SYSTEM_ALERT
Version ≥ Android O (8.0) TYPE_APPLICATION_OVERLAY

FLAG_NOT_TOUCHABLE can receive the same event of the
type MotionEvent.ACTION_OUTSIDE. The event contains
a flag FLAG_WINDOW_IS_OBSCURED, which is for security
consideration: Android allows an app to know whether there
are any other windows shown above it by checking this
flag. For example, if there are n windows o1, o2 to on that
have decreasing Z-order values; when a user touches the
window oi, then all windows o1 to oi will receive the same
event with FLAG_WINDOW_IS_OBSCURED=0 but the remain-
ing windows oi+1 to on will receive the same event with
FLAG_WINDOW_IS_OBSCURED=1.

By properly utilizing Android windows, a malicious app
may be able to capture user motion actions and then pre-
dict user inputs by deliberately arranging a sequence of
windows [2]. This vulnerability has been fixed for Android
(after 7.1.1); and the flag FLAG_WINDOW_IS_OBSCURED of
the event MotionEvent.ACTION_OUTSIDE will not be set
any more [22].

Note, when using overlays (even for normal apps), the
quick-settings dropdown of the Android phone will list a
message to show that an app is laying overlays on other apps.
However, Android system does not provide any notifications
for users. Therefore, users cannot notice our attack, if they do
not check the quick-settings dropdown manually.

C. Trap Based User Input Stealing

We illustrate how our attack can steal passwords in Figure
5. When an IME (input method editor) appears, we create a
transparent window that covers the IME and set this window to
intercept touch events (Figure 5(d)), such that the underlying
IME cannot receive any touch event. That is, only our trans-
parent window can receive touch events with touched locations

RRATS

IME

time

a f

a f

s g

d h

a s d f g h

Att. 1

Att. 2

Att. 3

Finally
s d

f

g h

a

(a) Trap user inputs via a Pre-Race Attack.
(b) Synthesize a password

from three attacks.

(c) A Trap-Pattern to trap two inputs.

RRATS

t1 t2

time

IME
(d) A Window to Cover an IME

a s d f g h

RRATS

IME

Fig. 5. Trap Based User Inputs Stealing.

which correspond to the key intended to touch by users. We
use RRATS1 to denote such a malicious app. Of course, one
key step for such attacks is how to know when a user is
about to open an IME. This has been investigated and several
successful approaches have been proposed based on tracking
phones’ motion sensors (e.g., accelerometer, gyroscope, and
orientation sensors) [23], [24]. As this is not the focus of this
paper, we assume that it is known to RRATS1 about when a
user opens an IME.

Suppose that the user input consists of six chars: "asdfgh".
For the first touch (press on key a), RRATS1 consumes it;
and immediately after that, RRATS1 removes the window. At
this time, there is a high probability that users can observe
no feedback from the IME (or nothing inputted). Then, the
users will touch the same key for the second time. As our
window has been removed, the IME can receive the second
touch and the key a is inputted. In order not to disturb user
input too much, RRATS1 will not show the window again
until it guesses that the user has pressed several keys. This
can be based on statistics over the time elapsed to input one
key. Suppose that, after the user presses on key d, RRATS1

shows the window for the second time. It can then capture
user touch on key f. For any later input (of the same session),
RRATS1 will not show the window again. Finally, RRATS1

gets two inputs a and f. In other words, in one attack, RRATS1

is able to capture two keys of a user input as well as the time
elapsed in between user touches on the two keys. We call this
is a trap-pattern as shown in Figure 5(c).

A trap-pattern requires one or more parameters ∆ti indicat-
ing the time to trap the i-th user input (or called i-trap-pattern).
In Figure 5(c), the trap-pattern requires two parameters with
aim to trap two user inputs in each attack. General, for an
i-trap-pattern, it requires at least l ÷ i attacks to recover a
password where l is the length of the password. For the
input "asdfgh", by carefully design another two trap-patterns,
RRATS1 can recover the whole user input (see Figure 5(b)).

We have developed RRATS1 and conducted an experiment
to "steal" password. It records the time elapsed from IME
appears to the time it traps an input. After running RRATS1,
we invited a user to input "password" of 8 chars for 16
input sessions; and RRATS1 is configured to launch each
trap-pattern four times. During each session, RRATS1 is
configured to trap only two chars. Hence, there are totally
4 trap-patterns. For each trap-pattern, we set ∆t1 to be 0ms,

a d o p r s w
0

2000

4000

6000

(a) 2 x 4 attacks (b) 4 x 4 attacks

Time (ms) Time (ms)

Keys pressed (in alphabetic order) Keys pressed (in alphabetic order)

d
r

o
w

s
a

p

a d o p r s w
0

2000

4000

6000

Recovered User Inputs

Fig. 6. Result of Trap Based Password Stealing.

1000ms, 1500ms, and 2000ms, respectively, and ∆t2 to be
2500ms. The reason for this setting is: we suppose that, after
an IME appears, a user usually takes a long time to input
the first char (1000ms) but takes a short time to input the
subsequent chars (500ms per touch). As our trap-pattern is
design to trap a first touch and a fourth touch, there will be four
touches; however, once the first touch is trapped, the user has
to re-touch the key. Hence, there will be five touches between
two trapped touches, corresponding to 5×500ms = 2500ms.

The result is shown in Figure 6. In each subfigure of
Figure 6, the x-axis shows the chars trapped by RRATS1 in
alphabetic order, and the y-axis shows the corresponding time
elapsed to trap the char in form of a boxplot (as the same
trap-pattern is launched multiple times). In detail, Figure 6(a)
shows the statistics by applying each trap-pattern twice, i.e.,
2×4 = 8 attacks in the first 8 sessions; and Figure 6(b) shows
the same result except where each trap-pattern is launched four
times, i.e., 4 × 4 = 16 attacks in all 16 sessions.

From the two subfigures, we can conclude that they reflect
the same inputs: after an IME appears, the key "p" is firstly
typed, followed by the keys "a", "s", "w", "o", "r", and
"d". From two subfigures, we approximate the user’s input
to be "pasword", although an "s" is missing. However, it is
obviously reflected by two larger time-span in both subfigures
from "s" to "w" (highlighted by two rectangles). Based on our
analysis, this indicates the multiple inputs of the same key.
Finally, we can recover the full input "password" with a high
probability.

This attack can be launched during frequent inputs of the
same confidential data (i.e., daily inputs of passwords, PINs, or
IDs). For example, many apps (e.g., WeChat Pay and AliPay)
only support a six-chars’ numeric password (required in each
payment). In these scenarios, our attacks will have a high
probability to steal the passwords.

Discussion. Our above attack actually utilizes users’ mis-
takes during inputting. In practice, it is difficult for a user
to observe our attacks as it is very common for users to type
wrong characters and the inputting error rate is up to 10% [25].
Besides, in our attack, the frequency can also be configured to
a low level to eliminate users’ suspiciousness. Actually, even
if a complete input (e.g., a password) cannot be captured, such
attacks can extremely reduce searching space for brute force
approaches to guess passwords.

V. APPS ROBUSTNESS ANALYSIS

To evaluate the robustness of existing apps against three
kinds of RRAttacks (Pre-Use attacks on camera and touch-
screen, and In-Use attacks on camera), we developed a static
analysis tool RRACHECK to automatically analyze given apps
against three kinds of RRAttacks and applied it on 1,000
popular apps (from f-droid.org). We aim to answer the
following three research questions:

• RQ1: Are existing apps robust against the Pre-Use attacks
on camera? What protection mechanisms are used?

• RQ2: Are existing apps robust against the In-Use attacks
on camera? What protection mechanisms are used?

• RQ3: Are apps robust against the Pre-Use attacks on
touchscreen? What protection mechanisms are used?

As it is difficult for an app to learn whether any attack may
be launched after it releases a camera, we do not study the
app robustness against the Post-Use attacks on cameras.

A. Criteria for RQs
A camera can be used in different ways. Usually, its usage

pattern is: (1) to create a camera object, (2) to take photos, and
(3) to release the camera. As we only focus on Pre-Use and
In-Use attacks, we present all possible combinations to create
camera objects and to take photos and further determine both
Pre-Use and In-Use attacks on camera.

In detail, an app can create a camera object by in-
voking API calls (e.g., CameraManager.openCamera() or
Camera.open()) under certain scenarios, for example, (1)
initializing a camera when an activity is created (e.g.,
Activity.onCreate()), (2) initializing a camera when a
surface is created (e.g., surfaceCreated()), (3) initializing
a camera to response a button event (e.g., onClick()) and so
forth.

Given the RRAttacks steps and the camera usages, we
present two criteria for answering the first two RQs.
Criterion C1 for answering RQ1. When creating camera
objects, if an app neither checks the availability of camera nor
exception handler to capture whether the focus of the camera
is lost unexpectedly, it is vulnerable to Pre-Use attacks on
camera.

Assume that an app creates a camera object without check-
ing whether the camera is available. Then, if this camera
request is known to a malicious app prior to its creating, the
malicious app can easily launch Pre-Use attacks.

Hence, checking availability is part of protection
from Pre-Use attacks. Besides, an app can passively
listen to camera availability by registering call backs via
CameraManager.registerAvailabilityCallback().
Additionally, once an expected camera is unavailable, an app
can issue a warning to users, allowing users to take further
protection.
Criterion C2 for answering RQ2. When taking photos (i.e.,
using cameras), if an app does not ensure that it is running in
foreground, it is vulnerable to In-Use attacks on cameras.

This criteria is straightforward because, under In-Use attack
on camera, it is necessary (at least for our validated procedure)

TABLE III
RISK LEVEL FOR RRATTACKS.

Programming Pattern Risk Vul.
1 Null check + RuntimeException + Alert 0 7
2 Null check + CameraAccessException + Alert 0 7
3 hasSystemFeature + RuntimeEx. + Alert 0 7
4 hasSystemFeature + CameraAccessEx. + Alert 0 7
5 Null check + Alert 1 3
6 hasSystemFeature + Alert 1 3
7 RuntimeException + Alert 1 3
8 CameraAccessException + Alert 1 3
9 Exception + Alert 2 3

10 Null check + RuntimeException 3 3
11 Null check + CameraAccessException 3 3
12 hasSystemFeature + RuntimeException 3 3
13 hasSystemFeature + CameraAccessException 3 3
14 Null check 4 3
15 hasSystemFeature 4 3
16 RuntimeException 4 3
17 CameraAccessException 4 3
18 Exception 4 3
19 Nil 5 3

to create an activity with a highest priority. This forces the
victim app using any camera to be moved in background and
to lose the gained camera.

Hence, ensuring running status (being in foreground) is
part of protection from In-Use attacks when using cameras.
Similarly, additional protection includes issuing a warning to
users once an app becomes running in background.

Considering the complexity of Android design, we
summarize all concrete implementation to achieve above
criteria. Of course, any implementation satisfies above
criteria should be regarded as a protection to RRAttacks.
On Android, the availability of any camera can be verfied
by: (1) checking camera object against null right after
creating it, (2) capturing exceptions in creating and using
cameras (where the two main kinds of exceptions are
RuntimeException and CameraAccessException),
and (3) checking whether a device has a camera
(PackageManager.hasSystemFeature()).

Once the above camera availability checking returns false,
an app should notify users. On Android, the notification can
be sent to users by either (1) showing a popup window, (2)
showing a dialog, or (3) showing a toast window.

Hence, for an app to be invulnerable to RRAttacks for an
app, both camera availability and notifications to users should
be well designed. We analyze the combinations of above
implementations as shown in Table III. In the table, we use
"Alert" to denote that at least one kind of three notifications
is adopted. We also assign each combination a risk level from
0 to 5, indicating to what extent, the combination suffers from
(Pre-Use and In-Use) RRAttacks. A larger risk level indicates
that the combination is more likely to suffer from RRAttacks.
Totally, there are 19 combinations. For example, for an app
implementing "null checking + Exception handling + Alert" is
unlikely to suffer from RRAttacks; but an app with no camera
availability checking, no exception handling, and of course no
notifications to users are most likely to be attacked.

Compared with cameras, the use of touchscreen is relatively

straightforward. That is, an app can only be able to passively
react to touchscreen events. If there is any Pre-Use attacks on
touchscreen, there will be a window above this app during
its inputting session (at least for our validated procedure in
Section IV). So, the criterion to answer RQ3 is:
Criterion C3 for answering RQ3. During inputting session
of sensitive information, if an app does not verify whether its
window is obscured by another window, the app is vulnerable
to Pre-Use attacks on touchscreens.

As demonstrated in Section IV, without learning about
other windows, Pre-Use attacks can easily suffer from Pre-
Use attacks.

Hence, a protection against Pre-Use attacks on touch-
screen is to check any existence of other windows on re-
ceiving touch events. Android offers an API (getFlags()
and FLAG_WINDOW_IS_OBSCURED) to indicate whether any
window exists when a touch event occurs.

B. Design of RRACHECK

RRACHECK is designed to directly work on apk files. Given
an apk file, RRACHECK transforms it into the Jimple (an
intermediate language) representation used in Soot [10]. Soot
is a widely adopted framework for Java program optimization
[26]. For the implementation, RRACHECK is built on top
of FlowDroid [10], where FlowDroid is built atop Soot.
RRACHECK constructs an abstract syntax tree (AST) and
builds up a method call graph (MCG). An inter-procedure
control flow graph (ICFG) is also built from MCG (e.g., to
determine how an exception in a call is handled in different
methods). For any statement invoking APIs related to cameras
or touchscreen, RRACHECK traverses the MCG to collect all
methods calling any of these APIs.

RRACHECK also constructs a data dependency graph
(DDG) consisting of data dependencies for two statements.
The data dependency of two statements are defined as: if a
variable v is defined in a statement s1 and is used in another
statement s2, then s2 has a data dependency on s1. As Android
is an event-driven system, components (e.g., Activity) are
communicated through sending intents. When building the
DDG, we leverage IccTA [27] to identify the receiver of each
intent. The DDG is used to check whether an app checks a
data against another data (e.g., null checking).

Next, we implemented three flows to check three criteria
(C1, C2, and C3), as shown in Figure 7. We have verified our
implementation on 50 open-source apps from f-droid.com.
We performed a manual examination on these apps from their
source code. Based on the three criteria, our manual analysis
result was exactly the same as that produced by RRACHECK.

C. Results: Pre-Use Attack Analyses on Camera

Based on our analysis, there were 672 out of 1,000
apps requesting CAMERA permissions. And 337 of them
actually create camera objects but 285 apps send intent
with the action MediaStore.ACTION_IMAGE_CAPTURE,
ACTION_IMAGE_CAPTURE_SECURE, or ACTION_VIDEO

_CAPTURE to other apps and leverage them to take picture or

Have null
checking?

No
Have

Exception
handler?

Yes

No

OK
Yes

Vulnerable

Check background running?
NO

Yes OK

Vulnerable

Checking “window” existence?
NO

Yes
OK

Vulnerable

Camera
creating

statements
Apks operating

cameras

Apks operating
cameras

(a) Check Pre-Use RRAttacks on cameras

(b) Check In-Use RRAttacks on cameras

(c) Check Pre-Use RRAttacks on touchscreens

Apks with
touchscreen events

Fig. 7. Flows to Check Three RRAttacks.

record video. 121 apps only call MediaRecorder.start()
to record video and they do not call APIs to take pictures.
Moreover, 238 apps neither call camera related APIs nor send
out camera related intent.

Among the 337 apps creating camera objects (in 1,030
methods), 247 apps either check camera objects against null
(in 603 methods) or capture exception via try-catch blocks
(in 530 methods). That is, according to the criteria for answer-
ing RQ1, 90 (90/337=26.7%) apps are regarded as vulnerable
to Pre-Use attacks on cameras.

We analyzed the protection mechanisms adopted in
the 337 apps. Only one app registers a callback (i.e.,
call registerAvailabilityCallback()) to be noti-
fied on camera device availability (i.e., com.wiscomwis

.facetoface). On creating null camera objects or capturing
any exceptions, 63 apps either record the event in log (for
48 apps by calling Log.e() but without notifying users) or
notify users (for 15 apps via Toast or Popup alert dialog).
The remaining 273 apps out of the 337 apps neither record
anything in log nor notify users on failing to create camera
objects.

We further analyzed whether any apps will notify users
about any failure after checking camera objects against null
or capturing exceptions. The result shows that 6 apps do so.
In details, 4 apps notify users on creating a null camera
object and 2 apps notify users on capturing either Exception
(i.e., com.camera.comx.pic) or RuntimeException (i.e.,
com.example.anchortooldemo). Additionally, 9 apps both
check camera objects against null and capture exceptions but
without notifying users.

Answer to RQ1: Among 337 apps creating camera ob-
jects out of the 1,000 apps, 90 apps (90/337=26.7%) are
vulnerable to Pre-Use attacks on cameras. And 273 apps
(273/337=81.0%) neither notify users or record anything in
log on failing to create camera objects.

Among the 337 apps creating camera objects,
there are 233 of them calling ActivityManager.

getRunningAppProcesses() and comparing the result
with one of the three flags IMPORTANCE_FOREGROUND,

IMPORTANCE_CHANGED, or IMPORTANCE_BACKGROUND.
That is, according to the criteria for answering RQ2, 104
apps (104/337=30.9%) are vulnerable to In-Use attacks on
cameras.

On checking protections by these apps, no app notify
users when they are moved to background. (Note that, some
apps indeed have notifications to users; however, all of these
notifications are related to photo uploading, file scanning, or
optimizations that are not related to their running status.)
Answer to RQ2: Among 337 apps creating camera objects
out of the 1,000 apps, 104 apps (104/337=30.9%) are vul-
nerable to In-Use attacks on cameras. And all apps (100%)
take no mechanism when they are moved into background.

D. Result: Pre-Use Attacks on Touchscreen
RQ3 is on the Pre-Use attacks on touchscreen to steal inputs

from users. Hence, we limit our analysis to apps that have
confidential inputs (like passwords). In this study, we only treat
passwords in login activities as confidential inputs. Hence, we
manually examined all apps to identify all apps with Login
activities. This results in 244 apps out of the 1,000 apps. Next,
we passed these apps to our RRACHECK.

Among the 244 checked apps, only 20 of them call API
MotionEvent.getFlags(). However, only one of these 20
apps actually checks the flag FLAG_WINDOW_IS_OBSCURED

(i.e., the method onFilterTouchEventForSecurity()).
We have ensured the correctness of our RRACHECK
by randomly selecting 20 apps and manually
inspecting their source code. YouTube is the only app
(com.google.android.youtube).

Surprisingly, the result indicates that, according to the
criteria for answering RQ3, 243 apps (243/244=99.6%) are
vulnerable to Pre-Use attacks on touchscreen. Only one app
seems to take some mechanism against this kind of attacks.
However, our further inspection into this app shows that,
although it checks the flag, it does not take any mechanism
like notifying users.
Answer to RQ3: Among 244 apps requiring passwords out
of the 1,000 apps, 243 (243/244=99.6%) are vulnerable to
Pre-Use attacks on touchscreen. No protection is found in
these apps.

Discussion. Our above analysis only measures a lower
bound. This is because, even if an app contains code to
handle some "unusual case", they may still be vulnerable to
RRAttacks. For example, when an app cannot open a camera
for the first time, it may try for more times before notifying
users. During this period, a RRAttack might have been done.
We have encountered such a case on WeChat: it waits for
5 seconds before notifying camera unavailability. From our
experiment, a 5-seconds period is enough to launch both Pre-
Use and Post-Use attacks on cameras.

VI. DEFENSE OF RRATTACKS

It is difficult for users to well manage resource permission
on Android to defend RRAttacks. Android apps should also be

TABLE IV
SUGGESTED DEFENSE STRATEGY AGAINST RRATTACKS.

Suggested Defense Strategy

C
am

er
a

Pre-Use [User App] Check camera availability first and issue warn-
ings if unavailable.

In-Use
[User App] Issue warnings if the focus of an opened camera
is lost.
[Sys. App] Ensure itself is running in the foreground while
using cameras.

Post-Use
[User App] Hold a camera until the resource is consumed
(e.g., A QR code becomes invalid; or a target becomes
invisible to camera).

To
uc

hS
cr

ee
n

Pre-Use

[User App] Check FLAG_WINDOW_IS_OBSCURED flag in
touch events to determine any malicious windows. Or for
sensitive views, set the filterTouchesWhenObscured
attribute to ignore touch events dispatched from other win-
dows.
[Sys. App] Ensure no other window existed above it.
[Android] Provide an Interrupted-like flag in each event to
indicate whether any touch has been received by a third app
in between two consecutive touches received by the current
app.

equipped to be aware of and to prevent RRAttacks. We present
several defense strategies on cameras and touchscreens, as
listed in Table IV.

A. Defend RRAttacks on Cameras

Cameras suffer from all three attacks. We assume that, when
a user app requests a camera, a camera is expected to be
available. Hence, an app should firstly check the availability of
a camera and immediately issue a warning if it is unavailable.

Hence, to prevent In-Use and Pre-Use attacks on cameras,
an app should immediately issue a warning if it lost an opened
camera. For system apps, they should make sure that they
have the highest priority such that the opened camera cannot
be preempted by other apps. Developers can still use the
Camera2 API to protect against the attacks. By registering
a listener on the camera’s availability (CameraManager.
AvailabilityCallback), attacked apps will be informed
that they lost the control of the camera in use (or requested).
Then, the attacked app can return to foreground by starting an
activity to inform users that there is a potential malicious app.

To prevent Post-Use attacks on cameras, an app should hold
camera for some time after taking photos to ensure that the
involved environment is consumed (e.g., any target has been
moved out of scope of cameras) or is no longer valid (e.g.,
for a QR code).

Discussion. Our above suggestion actually contradicts the
widely suggested strategy: an app should release any resource
as early as possible to avoid resource leaks [5], [28], which is
also a common practice: "Once your application is done using
the camera, it’s time to clean up" [29]. However, from the
perspective of security, the common practice may be harmful
considering Post-Use attacks.

B. Defend RRAttacks on Touchscreen

Touchscreen only suffers from Pre-Use attacks. We suggest
an app check the flag FLAG_WINDOW_IS_OBSCURED to de-

termine whether a window may exist above it. Or it should
filter touch events dispatched from other windows by setting
filterTouchesWhenObscured. System apps can execute
dumpsys window displays to check whether any window
exists.

For Pre-Use attacks on touchscreen by trapping user inputs
(see Section IV-C), there is no good way to allow an under-
lying user app be notified. Tracking user input speed might
be an option. Another possible way is, for Android system,
to provide an Interrupted-like flag within each event. This
flag can be used to check that, whether any touch has been
received by a third app (excluding Android system) in between
two consecutive touches received by a user app.

VII. RELATED WORK

A. Discussion on Related Works

The work [30] relies on a two-phase (i.e., training and
testing) machine learning based approach to determine when
to launch the attack; whereas RRAttack does not need such
a heavy-weight approach. Take RRAttack on camera as an
example. RRAttack has three attacks on camera (Pre/In/Post)
whereas the latter has only one (which is a special case of our
Post-Use RRAttack) and it cannot launch both Pre-Use attacks
and In-Use attacks. In details, the latter frequently requests a
camera in background to infer whether it is released (if so,
it takes photos). In contrast, our Post-Use RRAttacks is much
more efficient because it passively listens to whether a camera
is just released (if so, it takes photos).

Besides, Google’s latest policy renders the attack in [30]
ineffective because taking photos at background is forbidden
since Android P [17]. However, such a policy does not affect
RRAttack as explained in this paper.

The work [31] is a kind of Task-Hijacking attacks;
whereas RRAttack does not rely on task-hijacking. Take
RRAttack on camera as an example. When a camera is
in-use or is just released, we launch a new activity with
flag FLAG_ACTIVITY_NEW_TASK from a background service.
Therefore, the launched activity is placed in a new task stack
instead of the one used by the victim app.

B. Other Related Works

In traditional desktop and browser environments, user inter-
face attacks and side channel attacks have been well studied
[32]–[43]. With the ubiquity of mobile devices especially the
Android smartphones, these attacks have been explored by
researchers and malicious adversaries to mobile environments.
GUI Attacks on Android. A variety of Android GUI attacks
have been investigated by researchers. Niemietz et al. [44]
ported desktop-based UI redressing attacks, including the
classic clickjacking attack and the tapjacking attack, to An-
droid devices. These attacks involve two participants, a visible
attacker’s foreground app in form of a notification and a target
background App. They can be seen as the primary window
overlay attacks (or draw-on-top attacks). Roesner et al. [45]
elaborated a wide range of GUI related attacks involving
embedded (or child) user interfaces and host (or parent) view

components. For instance, the display forgery attack means the
parent App modifies the child element, the input forgery attack
denotes that the host App delivers the forged user input into an
embedded view component, and the DoS attack refers that the
parent App prevents user input from reaching a child element.
Bianchi et al. [46] proposed a series of GUI confusion attacks
to exploit the user’s inability to verify which App is drawing
on the screen and receiving user events.
Side Channel Attacks on Android. Since the smartphone
consists of a plethora of embedded features and sensors, a
growing number of side channel attacks targeting Android
devices have been proposed [47]. Traditionally, attackers
exploit information leaked from physical side channels to infer
personal or industrial sensitive information. Cai et al. [48]
proposed a keystroke inference attack based on the exploration
that keystroke vibrations are highly correlated to the keys
being typed as demonstrated. Das et al. [49] simultaneously
used both of the accelerometer and the gyroscope to produce
the accurate device fingerprint. The camera and the micro-
phone are two other commonly misused side channels to infer
users’ sensitive events or physical surroundings. Templeman et
al. [50] introduced a novel visual malware that allows remote
hackers to reconstruct rich three-dimensional models of the
user’s personal indoor spaces. Simon et al. [51] described a
novel side channel attack on camera and microphone to infer
PINs entered on a number-only soft keyboard. Fiebig et al. [52]
analyzed images of facial reflections captured by the front-
facing camera, to infer users’ keystrokes. Narain et al. [53]
designed a sound trojan that records users’ dialogs via the
microphone to further recognize users’ credit card numbers
through audio processing algorithms.

VIII. CONCLUSION

We present Resource Race attacks (RRAttacks) on Android
and identify that both cameras and touchscreen are vulnerable
to RRAttacks including both POC attacks and real-world
attacks. We further report an experiment over 1,000 apps on
whether they are vulnerable to RRAttacks. Based on the causes
of RRAttacks, we propose several strategies on defense of
RRAttacks for user apps, system apps, and Android system.

ACKNOWLEDGMENT

This work is supported in part by the National Natural
Science Foundation of China (NSFC) (Grant No. U1736209,
61572483, 61602457, and 61932012), the Key Research Pro-
gram of Frontier Sciences, CAS (Grant No. ZDBS-LY-7006
and QYZDJ-SSW-JSC036), the Youth Innovation Promotion
Association of the Chinese Academy of Sciences (YICAS)
(Grant No. 2017151), the Young Elite Scientists Sponsorship
Program by CAST (Grant No. 2017QNRC001), and the Hong
Kong RGC Project (No. 152223/17E, CityU C1008-16G).

REFERENCES

[1] C. Guo, J. Zhang, J. Yan, Z. Zhang, and Y. Zhang, “Characterizing
and detecting resource leaks in android applications,” in 2013 28th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2013, pp. 389–398.

[2] Y. Fratantonio, C. Qian, S. P. Chung, and W. Lee, “Cloak and dagger:
From two permissions to complete control of the ui feedback loop,” in
2017 IEEE Symposium on Security and Privacy (SP), 2017, pp. 1041–
1057.

[3] Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking into your app without
actually seeing it: Ui state inference and novel android attacks,” in
Proceedings of the 23rd USENIX Conference on Security Symposium,
ser. SEC’14, 2014, pp. 1037–1052.

[4] X. Bai, Z. Zhou, X. Wang, Z. Li, X. Mi, N. Zhang, T. Li, S.-M.
Hu, and K. Zhang, “Picking up my tab: Understanding and mitigating
synchronized token lifting and spending in mobile payment,” in 26th
USENIX Security Symposium (USENIX Security 17), 2017, pp. 593–
608.

[5] T. Wu, J. Liu, Z. Xu, C. Guo, Y. Zhang, J. Yan, and J. Zhang, “Light-
weight, inter-procedural and callback-aware resource leak detection for
android apps,” IEEE Transactions on Software Engineering, vol. 42,
no. 11, pp. 1054–1076, 2016.

[6] Y. Z. X. Jiang and Z. Xuxian, “Detecting passive content leaks and
pollution in android applications,” in Proceedings of the 20th Network
and Distributed System Security Symposium (NDSS), 2013.

[7] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting
android apps for component hijacking vulnerabilities,” in Proceedings
of the 2012 ACM conference on Computer and communications security,
2012, pp. 229–240.

[8] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. A.
Gunter, and K. Nahrstedt, “Identity, location, disease and more: Inferring
your secrets from android public resources,” in Proceedings of the 2013
ACM SIGSAC conference on Computer and communications security,
2013, pp. 1017–1028.

[9] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of
my market: detecting malicious apps in official and alternative android
markets.” in NDSS, vol. 25, no. 4, 2012, pp. 50–52.

[10] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269, 2014.

[11] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru,
and I. Molloy, “Using probabilistic generative models for ranking risks
of android apps,” in Proceedings of the 2012 ACM conference on
Computer and communications security, 2012, pp. 241–252.

[12] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smart-
phone applications in third-party android marketplaces,” in Proceedings
of the second ACM conference on Data and Application Security and
Privacy, 2012, pp. 317–326.

[13] “Race condition,” https://en.wikipedia.org/wiki/Race_condition, (Last
accessed on June, 2019).

[14] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A dynamic data race detector for multithreaded programs,”
ACM Transactions on Computer Systems (TOCS), vol. 15, no. 4, pp.
391–411, 1997.

[15] Y. Cai, B. Zhu, R. Meng, H. Yun, L. He, P. Su, and B. Liang, “Detecting
concurrency memory corruption vulnerabilities,” in Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2019. New York, NY, USA: ACM, 2019, pp. 706–717.

[16] Google, “Android camera2 overview,” https://developer.android.com/
reference/android/hardware/camera2/package-summary.html, (Last ac-
cessed on June, 2019).

[17] “A boon for privacy: Android p will prevent idle background
apps from accessing the camera,” https://www.xda-developers.com/
android-p-background-apps-camera/, (Last accessed on June, 2019).

[18] K. Kennedy, E. Gustafson, and H. Chen, “Quantifying the effects
of removing permissions from android applications,” in Workshop on
Mobile Security Technologies (MoST), 2013.

[19] “Qr code reader,” https://play.google.com/store/apps/details?id=tw.
mobileapp.qrcode.banner, (Last accessed on June, 2019).

[20] “Ocr,” https://app.xunjiepdf.com/en/ocr, (Last accessed on June, 2019).
[21] “Activity,” https://developer.android.com/reference/android/app/Activity,

2018.
[22] “Remove window obscurement information,” https:

//android.googlesource.com/platform/frameworks/native/+/
5508ca2c191f8fdf29d8898890a58bf1a3a225b3, 2018.

[23] Z. Xu, K. Bai, and S. Zhu, “Taplogger: Inferring user inputs on smart-
phone touchscreens using on-board motion sensors,” in Proceedings of

the Fifth ACM Conference on Security and Privacy in Wireless and
Mobile Networks, ser. WISEC ’12, 2012, pp. 113–124.

[24] A. Ghosh and G. Riccardi, “Recognizing human activities from smart-
phone sensor signals,” in Proceedings of the 22Nd ACM International
Conference on Multimedia, ser. MM ’14. New York, NY, USA: ACM,
2014, pp. 865–868.

[25] K. Vertanen, H. Memmi, J. Emge, S. Reyal, and P. O. Kristensson,
“Velocitap: Investigating fast mobile text entry using sentence-based
decoding of touchscreen keyboard input,” in Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems, ser.
CHI ’15. New York, NY, USA: ACM, 2015, pp. 659–668.

[26] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot: A java bytecode optimization framework,” in CASCON First
Decade High Impact Papers, ser. CASCON ’10, 2010, pp. 214–224.

[27] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta: Detecting
inter-component privacy leaks in android apps,” in Proc. ICSE, 2015.

[28] Y. Liu, C. Xu, S. C. Cheung, and J. LÃij, “Greendroid: Automated
diagnosis of energy inefficiency for smartphone applications,” IEEE
Transactions on Software Engineering, vol. 40, no. 9, pp. 911–940, Sept
2014.

[29] “Control the camera,” https://developer.android.com/training/camera/
cameradirect, 2018.

[30] Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking into your app without
actually seeing it: Ui state inference and novel android attacks,” in
Proceedings of the 23rd USENIX Security Symposium, ser. SEC ’14,
2014, pp. 1037–1052.

[31] C. Ren, Y. Zhang, H. Xue, T. Wei, and P. Liu, “Towards discovering
and understanding task hijacking in android,” in Proceedings of the 24th
USENIX Security Symposium, ser. SEC ’15, Washington, D.C., 2015, pp.
945–959.

[32] S. Chen, J. Meseguer, R. Sasse, H. J. Wang, and Y.-M. Wang, “A sys-
tematic approach to uncover security flaws in gui logic,” in Proceedings
of the 28th IEEE Symposium on Security and Privacy, ser. SP ’07, 2007,
pp. 71–85.

[33] D. Akhawe, W. He, Z. Li, R. Moazzezi, and D. Song, “Clickjacking
revisited: A perceptual view of ui security,” in Proceedings of the 8th
USENIX Workshop on Offensive Technologies, 2014.

[34] L.-S. Huang, A. Moshchuk, H. J. Wang, S. Schecter, and C. Jack-
son, “Clickjacking: Attacks and defenses,” in Proceedings of the 21st
USENIX Security Symposium, ser. SEC ’12. USENIX, 2012, pp. 413–
428.

[35] S. Lekies, M. Heiderich, D. Appelt, T. Holz, and M. Johns, “On
the fragility and limitations of current browser-provided clickjacking
protection schemes,” in Proceedings of the 6th USENIX Workshop on
Offensive Technologies. USENIX, 2012.

[36] S. Duman, K. Onarlioglu, A. O. Ulusoy, W. Robertson, and E. Kirda,
“Trueclick: Automatically distinguishing trick banners from genuine
download links,” in Proceedings of the 30th Annual Computer Security
Applications Conference, 2014, pp. 456–465.

[37] M. Johns and S. Lekies, “Tamper-resistant likejacking protection,”
in Proceedings of the 16th International Symposium on Research in
Attacks, Intrusions and Defenses, 2013, pp. 265–285.

[38] B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D. Sutter,
“Practical mitigations for timing-based side-channel attacks on modern
x86 processors,” in Proceedings of the 30th IEEE Symposium on Security
and Privacy, ser. SP ’09, 2009, pp. 45–60.

[39] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in web
applications: A reality today, a challenge tomorrow,” in Proceedings of
the 31st IEEE Symposium on Security and Privacy, ser. SP ’10, 2010,
pp. 191–206.

[40] Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and C. Jackson, “I still
know what you visited last summer: Leaking browsing history via user
interaction and side channel attacks,” in Proceedings of the 32nd IEEE
Symposium on Security and Privacy, ser. SP ’11, 2011, pp. 147–161.

[41] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Proceedings of the 36th IEEE
Symposium on Security and Privacy, ser. SP ’15, 2015, pp. 605–622.

[42] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-vm side
channels and their use to extract private keys,” in Proceedings of the
19th ACM Conference on Computer and Communications Security, ser.
CCS ’12, 2012, pp. 305–316.

[43] R. Callan, A. Zajic, and M. Prvulovic, “A practical methodology
for measuring the side-channel signal available to the attacker for

https://en.wikipedia.org/wiki/Race_condition
https://developer.android.com/reference/android/hardware/camera2/package-summary.html
https://developer.android.com/reference/android/hardware/camera2/package-summary.html
https://www.xda-developers.com/android-p-background-apps-camera/
https://www.xda-developers.com/android-p-background-apps-camera/
https://play.google.com/store/apps/details?id=tw.mobileapp.qrcode.banner
https://play.google.com/store/apps/details?id=tw.mobileapp.qrcode.banner
https://app.xunjiepdf.com/en/ocr
https://developer.android.com/reference/android/app/Activity
https://android.googlesource.com/platform/frameworks/native/+/5508ca2c191f8fdf29d8898890a58bf1a3a225b3
https://android.googlesource.com/platform/frameworks/native/+/5508ca2c191f8fdf29d8898890a58bf1a3a225b3
https://android.googlesource.com/platform/frameworks/native/+/5508ca2c191f8fdf29d8898890a58bf1a3a225b3
https://developer.android.com/training/camera/cameradirect
https://developer.android.com/training/camera/cameradirect

instruction-level events,” in Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’14, 2014,
pp. 242–254.

[44] “Ui redressing attacks on android devices,” https://media.blackhat.com/
ad-12/Niemietz/bh-ad-12-androidmarcus_niemietz-WP.pdf, 2012.

[45] F. Roesner and T. Kohno, “Securing embedded user interfaces: Android
and beyond,” in Proceedings of the 22nd USENIX Security Symposium,
ser. SEC ’13, Washington, D.C., 2013, pp. 97–112.

[46] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio, C. Kruegel, and
G. Vigna, “What the app is that? deception and countermeasures in the
android user interface,” in Proceedings of the 36th IEEE Symposium on
Security and Privacy, ser. SP ’15, 2015, pp. 931–948.

[47] R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard, “Systematic
classification of side-channel attacks: A case study for mobile devices,”
IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp. 465–488,
2018.

[48] L. Cai and H. Chen, “Touchlogger: Inferring keystrokes on touch screen
from smartphone motion,” in Proceedings of the 6th USENIX Conference
on Hot Topics in Security, 2011, pp. 9–9.

[49] A. Das, N. Borisov, and M. Caesar, “Tracking mobile web users through
motion sensors: Attacks and defenses,” in Proceedings of the 23rd
Annual Network & Distributed System Security Symposium, 2016.

[50] R. Templeman, Z. Rahman, D. Crandall, and A. Kapadia, “Placeraider:
Virtual theft in physical spaces with smartphones,” in Proceedings of the
20th Annual Network & Distributed System Security Symposium, 2013.

[51] L. Simon and R. Anderson, “Pin skimmer: Inferring pins through the
camera and microphone,” in Proceedings of the Third ACM Workshop
on Security and Privacy in Smartphones & Mobile Devices, ser.
SPSM ’13, 2013, pp. 67–78.

[52] T. Fiebig, J. Krissler, and R. Hänsch, “Security impact of high resolution
smartphone cameras,” in Proceedgins of the 8th USENIX Workshop on
Offensive Technologies, ser. WOOT ’14, 2014.

[53] R. Schlegel, K. Zhang, X.-y. Zhou, M. Intwala, A. Kapadia, and
X. Wang, “Soundcomber: A stealthy and context-aware sound trojan
for smartphones.” in Proceedings of the 18th Annual Network and
Distributed System Security Symposium, ser. NDSS ’11, 2011, pp. 17–
33.

https://media.blackhat.com/ad-12/Niemietz/bh-ad-12-androidmarcus_niemietz-WP.pdf
https://media.blackhat.com/ad-12/Niemietz/bh-ad-12-androidmarcus_niemietz-WP.pdf

	Introduction
	RRAttack Models and Scenarios
	Why Launching Attacks via Resource Race?
	Basic Assumptions
	Three Attack Models
	Resources Vulnerable to RRAttacks

	RRAttacks on Camera
	Experiment Design
	Experiment Validation
	Real-world Attacks

	RRAttacks on Touchscreen
	RRAttack Scenarios on Touchscreens
	Exploitable Design
	Trap Based User Input Stealing

	Apps Robustness Analysis
	Criteria for RQs
	Design of RRACheck
	Results: Pre-Use Attack Analyses on Camera
	Result: Pre-Use Attacks on Touchscreen

	Defense of RRAttacks
	Defend RRAttacks on Cameras
	Defend RRAttacks on Touchscreen

	Related Work
	Discussion on Related Works
	Other Related Works

	Conclusion
	References

