
JOURNAL OF LATEX CLASS FILES 1

Feature Location Benchmark for Decomposing and

Reusing Android Apps

Yutian Tang1, Hao Zhou1, Zhou Xu2, Xiapu Luo1, Yan Cai3, and Tao Zhang4

1Department of Computing, The Hong Kong Polytechnic University
2School of Big Data and Software Engineering, Chongqing University

3State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
4Faculty of Information Technology, Macau University of Science and Technology

*Corresponding Author: csxluo@comp.polyu.edu.hk

Abstract—Software reuse enables developers to reuse archi-
tecture, programs and other software artifacts. Realizing a
systematical reuse in software brings a large amount of benefits
for stakeholders, including lower maintenance efforts, lower
development costs, and time to market. Unfortunately, currently
implementing a framework for large-scale software reuse in
Android apps is still a huge problem, regarding the complexity
of the task and lacking of practical technical support from either
tools or domain experts. Therefore, proposing a feature location
benchmark for apps will help developers either optimize their
feature location techniques or reuse the assets created in the
benchmark for reusing. In this paper, we release a feature location
benchmark, which can be used for those developers, who intend
to compose software product lines (SPL) and release reuse in
apps. The benchmark not only contributes to the research com-
munity for reuse research, but also helps participants in industry
for optimizing their architecture and enhancing modularity. In
addition, we also develop an Android Studio plugin named caIDE
for developers to view and operate on the benchmark.

Index Terms—Software product line, feature location bench-
mark, reuse, android apps

I. BACKGROUND

Mobile apps dominate our daily life nowadays. Users can

easily download the apps from online app stores, such as,

Google Play, Amazon, Apple App Store and Windows Phone

marketplace. According to a recent report from AppBrain 1,

there are over 2,850,172 apps publicly available on Google

Play until the fall of 2018. The amount of apps increased

more than fourfold between 2013 and 2018.

The huge market with a large number of active users attacks

developers to contribute and release their artifacts via app

stores. According to the study conducted on 4,323 apps,

software reuse is the common practice among app developers.

For all apps concerned, 61% of the classes appears in

two on more apps on average. Furthermore, currently reuse

practice in apps mainly focuses on API library reuse, class

reuse and inheritance [1], [2]. Unfortunately, the current reuse

practice and tools cannot help developers in implementing a

systematically reuse of software artifacts in terms of app devel-

opment. Therefore, the current practice cannot help developer

reuse software artifacts systematically. Such as, implementing

1AppBrain:www.appbrain.com

a software product line (SPL) in Android apps. A software

product line is a set of software-intensive systems that share

a common set of features. Each system in the product line

contains unique segments that are defined to fulfill specific

needs of a particular market [3]. Then, developers will create

the product variants from the product line and tailor the variant

to end users.

By reusing the component systematically, stakeholders can

benefit from the software product line, including reducing

development efforts, reducing maintenance efforts, and time

to market [3]. Unfortunately, based on some existing research

experience [1], [2], [4], [5], existing reuse practice in apps

does not follow a framework with a theoretical foundation.

Instead, developers are more likely to follow a naive “copy-

paste” strategy, which may misuse some functions and even

introduce potential security problems.

To contribute the reuse practices in software product line

and further help stakeholder reuse artifacts in apps, in this

work, we take the first step to the systematical reuse. That

is, we present an Android Studio plugin for developers to

conduct the feature location, and release a benchmark of

feature location. A feature in an SPL represents an user-

visible function, aspect or characteristic of a system [3].

Feature location is an important and fundamental procedure

in software reuse. The task of feature location is trying to

find mapping between code fragments and features [6]. With

the feature location benchmark, more research prototypes can

be proposed and tested, especially the reuse framework for

apps. This can help developers get arid of immature reusing

practices. Also, due to the different context from desktop

applications, developers, who intend to focus on proposing

reuse framework for apps, should mainly reference the feature

location benchmark that targets on apps.

Contribution. To help developers boost their reuse practice

and provide back-end supports for reusing frameworks, we

provide a benchmark that contains over five hundred open

sourced android apps on F-Droid2. Specifically, in this work,

we mainly make the following contributions.

• We release a feature location benchmark for Android

apps. The benchmark contains over five hundred apps

2F-Droid: https://f-droid.org

www.appbrain.com
https://f-droid.org

JOURNAL OF LATEX CLASS FILES 2

from F-Droid.

• We propose an Android Studio Plugin named caIDE for

the benchmark. Developers can explore and even edit the

benchmark with the tool provided. Moreover, developers

can also use our tool to build their own benchmark and

release it to the community.

• We also discuss the uniqueness issues in feature loca-

tion for apps and differences between apps and desktop

applications in terms of software reuse.

The benchmark of 198 Android apps with ground-truth,

the scenarios, and caIDE tool can be found at:

https://sites.google.com/view/caide,

including technical tutorial on how to use it.

Skeleton This paper is organized as follows: Section II

presents the overview of benchmark construction and the

caIDE tool. Section III and IV introduce the technical details

on how to extract features, build feature models and locate

features, respectively. Furthermore, Section V introduce the

details of the benchmark in terms of features, feature models,

and feature annotations. In addition, our tool provides several

additional functions to allow developers further operate on the

benchmark. This part is covered in Section VI. We conclude

this work in Section VIII.

II. BENCHMARK CONSTRUCTION AND caIDE

To realize a systematic reuse in a system, the software reuse

community normally propose bottom-up techniques. Typically,

in a bottom-up approach, there are three major objectives:

feature identification (Section III-A and III-B), feature location

(Section IV-A and IV-B), and re-engineering [7], [8]. Specif-

ically, feature identification aims at finding and discovering

features for the product line. Then, in the feature location,

the feature and its implementations are mapped. For example,

in a music app (e.g. JOOX music), play a music could be

a feature. The feature location approaches will find the code

segments in the code base that corresponds to this feature.

Finally, feature re-engineering is a transformation process that

transforms the annotated system into target products. As for

our benchmark, we only cover the feature identification and

feature location process. As for the feature re-engineering, it

is totally a customized procedure. That is, stakeholders and

domain experts have to design the configuration for target

products. However, caIDE also provide additional functions

to help stakeholders on this procedure automatically.

In general, caIDE provides following major usages: (1)

annotating features in the code base; (2) viewing the anno-

tations; and (3) other supporting functions (Section VI). All

three objects in a typical bottom-up process are covered in

caIDE. Specifically, feature identification and feature location

are covered in the annotation process. The re-engineering

process is described in supporting functions in caIDE (Section

VI).

Annotation Process. The caIDE provides a series of functions

for developers and domain experts to define features, feature

model and annotate the features with visual supports. To

annotate a product, caIDE guides developers through the

following steps.

• STEP 1. Developers have to define the features and the

feature model in the product line. (Section III)

• STEP 2. Developers have to assign each feature a unique

background color. Here, caIDE can automatically assign

each feature a color. Developers can still customize the

background color.

• STEP 3. Developers can set code fragments with features.

(Section IV)

For step 1, caIDE provides a visual support for developers

to draw the feature model and edit the features in the feature

model easily. After this step, a feature model file named

featuremodel.afm is built. The feature model file strictly

follows the feature model grammar defined by Don Batory [9],

which is a well-adopted feature model representation. Then,

caIDE will guide developers to assign unique color to each

feature. Later, developers can assign the code fragments to

features as defined in step 3. Specifically, the developers first

select a code range in the editor in Android Studio IDE,

then they can set the feature for the code range from the

context menu. caIDE will visit the AST of the file and get

the AST nodes within the code range. Then, all these nodes

will be assigned to the features. Note that, if there is a “parent-

child” relation between two AST nodes in the range, we only

annotate the parent AST node. Once we remark a parent AST

node to a feature, all its children are annotated the feature

as well. The annotation will also be stored to external files

(named <file>.color) for reusing and displaying the back-

ground color. For example, when we annotate a code segment

in file Reader.java, then the caIDE will create a new file

named Reader.color to store the annotation information for

the file Reader.java. By putting those annotation files into

the same directory with its source code, caIDE avoids the

naming issue. We will introduce the corresponding technical

details in Section III and IV.

Explore Process. caIDE helps stakeholders check the anno-

tated systems. To display the benchmark, caIDE helps develop-

ers collect all information from the annotation files(.color)

in the program and renders the code fragments with back-

ground colors. More specific, caIDE will first search the

featuremodel.afm to recover the feature model. Then, it

will check the color.json file to build the mapping between

features and colors associated. At last, caIDE will inspect

all source code files and all annotation files to establish the

mapping between AST nodes and features. When a user opens

a file in the editor, the corresponding AST nodes will be

remarked with background colors.

Far more than these fundamental solutions, we extend

caIDE by providing more possible actions for developers to

directly use the benchmark we provided with ease. The details

of these functions are introduced in Section VI.

III. FEATURE AND FEATURE MODEL

A. Feature and Feature Identification

Features in an app describe the main functions or services

provided by the app, which are normally visible for end-users.

As defined previously, feature names of an app should be

defined by the domain experts. Normally, a domain expert has

https://sites.google.com/view/caide

JOURNAL OF LATEX CLASS FILES 3

to define the features and design the feature model. However,

this procedure could be time-consuming and tedious. We

provide an automatic approach to recommend some features

for developers. We extract the features from: (a) app’s de-

scription on Google Play Store; (b) app’s description for its

open source repository; and (c) textual information from app’s

implementation. Specifically, for (c), we extract the identifiers

from the code based to explore the potential feature names in

the app.

(ROOT
 (S
 (NP (NN Post) (NNS photos)
 (CC and)
 (NNS videos))
 (NP (PRP you))
 (VP (VBP want)
 (S
 (VP (TO to)
 (VP (VB keep)
 (PP (IN on)
 (NP (PRP$ your) (NN profile) (NN grid)))))))
 (. .)))

Post-1

photos-2

and-3 videos-4

want-6

to-7

keep-8

on-9

your-5

profile-11

grid-12

ROOT-0

root

comp

sbj

cc
conj

sbj

mark

xcomp

your-10

case
poss compnmod

Fig. 1: Parse tree of the sentence and universal dependencies between
words in the sentence

We use parts of speech (POS) tagging and parsing, to

explore the architectures of sentences. POS tags are assigned to

a single word according to its role in the sentence. Commonly-

used POS tags include ADJ (i.e., adjective), VB (i.e., verb),

NN (i.e., noun). Given the input sentence, we use the Stanford

Parser to get the parse tree of the input sentence and the

universal dependencies between words. The parse tree contains

the verb phrases (i.e., VP) and noun phrases (i.e., NP) of

the sentences and POS tags of each word. The universal

dependency describes the relationship between words. For

example, sbj refers to subject. We explore the parse tree and

universal dependencies between words to identify the noun

phrases and verb phrases contained in the sentence. These

phrases are considered as possible features.

Specifically, for (c), we treat each class as flat text and

use tf-idf to compute the importance of terms. The terms are

ordered to be recommended as feature names. At last, feature

names are selected from these recommendations.

B. Building Feature Model

With the features and feature annotations collected from

the previous step, we build the feature model. Technically,

the feature model should be built by domain experts of the

systems. In caIDE, the feature model can be built manually.

However, to reduce the bias and provide a handful approach for

the case that the domain expert is not available, basically we

follow She et al.’s work to build the feature model [10] in the

benchmark. She et al.’s approach [10] requires two inputs: the

complete dependencies and extensive descriptions. The way to

generate these two inputs is described as follows.

• Dependencies: the dependencies are extracted from two

aspects: (1) we manually learn the app’s description and

user manual (if any) and extract the potential depen-

dencies; (2) we install the app on the emulator and try

each feature in the app. Then, we describe the relations

between features.

• Descriptions: the descriptions of features are collected

from two parts: (1) the description, wiki and user manual

of the app; (2) some descriptions of features are presented

in the project’s change log and commit message. When

developers use some version control tools (e.g. svn,

github) to manage their project, developers have to write a

commit message to describe the changes for each commit.

With these information provided, the feature model can be

built automatically with the approach proposed in [10].

Example. In the app AnkiDroid, our approach recommends

12 features, including T2T (text-to-speach), CardBrowser,

Statistics, NightMode, FullBackup, Syncing, WriteAnswers,

WhiteBoard, DictionaryIntegration, CardEdit, Import, and

CustomFont. The feature model is built with the feature model

construction approach, as shown in Figure 2.

SPL

T2T Statistics SyncingBackup Card

CardEdit WriteAnswer CustomFont

Dict.

Integration

NightMode

Import CardBrowser

Fig. 2: The feature model of AnkiDroid

IV. FEATURE LOCATION

A. Annotation Scheme

Prior to feature location techniques, we first introduce the

annotation scheme we used in the caIDE. Our benchmark is

created with our plugin named caIDE, which is built with

IntellJ and targeted at Android Studio and IntellJ. With the

caIDE, we can decompose the app into features, which may

have a fine granularity. Developers first start with a fully

composed app with all features implemented in the application.

In software product line engineering, such a system is called

legacy application. Then, developers can annotate code frag-

ments with different features. One code can be associated with

one or more features. To annotate code segments with features,

currently there are two commonly used approaches: colored

annotation [11] and precondition compiling based annotation

(a.k.a #ifdef directive) [12]. Specifically, the colored annota-

tion binds code fragments with different background colors.

Each color represents a unique feature defined in the feature

model.

Example. As shown in Listing 1, different colors are asso-

ciated with different features. Code fragments in the program

are rendered with different colors to represent the feature

annotations. Apparently, there are three features involved in

the running example, include push, pop, and lock. In caIDE,

we also adopt this annotation scheme.

1 class Stack{

2 int size = 0;

3 Object[] elementData = new Object[maxSize];

4 boolean transactionsEnabled = true;

5 void push(Object o){

6 Lock l = lock();

7 elementData[size++] = o;

8 unlock(l);

9 }

JOURNAL OF LATEX CLASS FILES 4

10 Object pop(){

11 Lock l = lock();

12 Object r = elementData[--size];

13 unlock(l);

14 return r;

15 }

16 Lock lock(){

17 if (!transactionsEnabled) return null;

18 return Lock.acquire();

19 }

20 void unlock(Lock lock){/*...*/}

21 String getLockVersion() { return "1.0";}

22 }

23 class Lock {/*...*/}

Listing 1: Sample of Colored Annotation

Whereas, precondition based annotation is mainly used in

product line, that developed in C/C++. In practice, developers

use feature names as pre-conditions. If and only if the feature

is selected, the code fragment in the directive can be covered

in the target system. For example, when we use Linux system,

we can configure the kernel by selecting the features we want

and disabling features we are not interested.

Example. In List. 2, there are two preconditions:

CONFIG_SMP and CONFIG_APIC. The code block 1 will

be executed if the macro CONFIG_SMP is defined. The ex-

ecution condition for code block 2 is !CONFIG_SMP &&

CONFIG_APIC. Therefore, some benchmarks use this anno-

tation strategy to remark the features by setting the features

as the preconditions. Then, when some features are disabled

in the configuration, the if condition (#ifdef CONF) will

be FALSE. The code block within the condition will not be

covered in the product built.

1 #ifdef CONFIG_SMP

2 //block 1

3 #elif defined CONFIG_APIC

4 //block 2

5 #endif

Listing 2: Sample of Preprocessor Scheme

Currently the preprocessor annotation is also used in the

benchmark in other programming languages, like Java [13].

Such annotation strategy will not affect the execution of the

program, since they are always placed in the comments in the

program.

In caIDE, we adopt a colored annotation strategy for our

benchmark. We choose a colored annotation scheme based on

two considerations.

• The colored annotation will provide visual support for

developers. As discussed in [14], the background colors

have the potential to improve program comprehension.

• The relations between abstract syntactic tree (AST) nodes

and features are stored locally. Our tool can help develop-

ers operate the annotated system easily. Such as, inspect-

ing the interactions between features, and displaying the

code fragments for certain features.

B. Feature Location

The task of feature location is to map the features with their

implementations in the code base. In our benchmark, we adopt

the following steps for feature location.

• STEP 1 (recording individual feature). For each feature

collected, we first explore the app on the physical devices

and define a set of scenarios, which could represent the

feature. To capture the feature at runtime, we record

scenarios belonging to the feature with Method Tracer3

in Android Debug Monitor (ADM). A set of quadruples

{name, invocation count, inclusive time, exclusive time}
in execution order is returned for representing the feature.

Then, we manually annotate each features in the code

base with caIDE.

• STEP 2 (expand the annotations) With the first step,

only some methods for feature are annotated in the

program. Then, the feature annotation process can be

automatically conducted with our approach, which is a

conditional probability based feature mining approach

[15]. As demonstrated in the paper[15], our feature lo-

cation approach outperforms other three feature location

techniques.

• STEP 3 (manually checking and fixing) Finally, we

manually check the annotations returned by the feature

mining approach and fix inappropriate annotations. Here,

we conduct such check by reading the source code of app

and running the app on emulator.

V. BENCHMARK

In this section, we will introduce the components of the

benchmark. In general, in the benchmark, we provide the

following information and data for each app.

• For each app, we provide a list of features and a feature

model. The feature model describes the relations among

these features.

• The feature annotation ground-truth of each project is

presented as a series of xml file. Each xml file corre-

sponds to a Java file and represents the annotations in

the source code. Specifically, in the xml file, the mapping

between AST nodes and features is defined. The feature

location techniques can be used on the benchmark to test

their performance.

• Our tool caIDE provides visualization of the benchmark.

Code fragments for different features are assigned to

different background colors. Colors assigned for each

feature is described in the color.json file.

A. Target Apps

The target apps are selected from the open-source commu-

nity F-Droid4. We collect 1,365 open source Android apps

from F-Droid in total. Then we apply the following criteria to

select the target apps:

3Method Tracer: https://developer.android.com/studio/profile/am-methodtrace.html
4F-Droid: available at https://f-droid.org

https://developer.android.com/studio/profile/am-methodtrace.html
https://f-droid.org

JOURNAL OF LATEX CLASS FILES 5

• We only preserve those apps, that have been published

via Google Play, since the apps’ descriptions are mainly

collected from the Google Play.

• We exclude apps that are not developed in Java.

• We exclude trial apps that have less than 3 features.

• For those apps, that do not have sufficient descriptions,

we also skip them as well.

By applying these selecting criteria, 198 apps are reserved.

These apps cover 22 categories from Google Play. The top

categories include tools, productivity, communication and mu-

sic & audio. These apps’ downloads ranges from 5,000 to

100,000,000. Therefore, the apps selected for our benchmark

are objective.

B. Features and Feature Model

In the benchmark, we use the approaches presented

in Section III to extract features and build the feature

model. The feature model of the project is defined in the

feaeturemodel.afm file in each project’s root directory.

In addition, the colors bind with features are stored in the

color.json file. When developers use caIDE to update the

feature model or assign/update colors for features, these two

files are updated correspondingly. The number of features in

each project ranges from 2 to 19. Furthermore, the cumulative

distribution of the number of features in apps is shown in

Figure 3. As we can observe from Figure 3, half of subjective

apps have less than 6 features. This is due to some features are

implemented with third-party API and some are non-functional

features. Therefore, we cannot find the corresponding code

fragments in the code base for these features.

2 4 6 8 10 12 14 16 18 20

Number of features

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 p
ro
b
a
b
ili
ty

(2, 0. 025)

(19, 1. 0)

Fig. 3: The CDF of number of features in apps

By inspecting the features found from the description of

the app, not all features could be considered as features

for building the APL. For example, “Fast access to items”

is a feature listed in XBMC Remote app, but it cannot be

considered as a feature, since developers do not implement an

algorithm for fast accessing. In addition, those non-functional

features, e.g. “no ads ever”, “easy to use”, also cannot be

mapped to code fragments. Some features’ corresponding code

segments are implemented with third-party APIs. For example,

in a calendar app, the description contains a sentence “it

can connect your Google Accounts and can be synchronized

to automatically ...”. In practice, developers simply use the

Google API to implement this function. Here, we list several

features, which are frequently implemented by third-party

APIs.

• Http Utility: a lots of apps use the resources from

website. Therefore, developers often have to check the

connection status with http related libs. For example, the

APIs com.squareup.okhttp3 can be used to check the

network, send the request, and diagnose.

• Image download: some apps provide functions to allow

users download image from server. For example, the APIs

in com.squareup.picasso:picasso provide service

for image downloading and caching.

• Material design: some apps make the UI elements have

a material look-and-feel design. For example, the APIs

in com.afollestad.material-dialogs help devel-

opers in UI design.

• Color picker: some photo/image editing apps contains a

module to let users directly select color from the paint.

For example the lib j4velin.colorpicker provides

such functions for users.

C. Granularity

The granularity of features in Android product lines ranges

from fine to coarse. For fine granularity, a feature could be

simply implemented by a field, a statement, or even a case

block under switch-case structure. Whereas, some features

are represented by classes, or even packages. Discarding

those features, that are implemented with third-party APIs,

we compute the proportions of granularity of other features

used in apps. We find that the proportions of features in

field/variable, statement, method and class are 24.6%, 16.5%,

60%, 53.2%, respectively.

D. Usage of Benchmark

The benchmark can be used by developers and researchers

mainly for following cases.

• Testing feature location technique proposed. When

a novel feature location technique is proposed, there is

always a need for a benchmark in order to assess the

performance of the feature location technique. caIDE

allows developers to design their own feature location

approaches and annotate the product line with customized

approaches automatically.

• Building the product variants. caIDE allows develop-

ers to build the variant applications from the annotated

product line automatically. Developers only have to set

the configuration from the GUI configuration panel in

caIDE. Then caIDE can extract the product variants from

the annotated product with the configuration provided.

We introduce the details of this function in Section VI-B.

• Inspecting the feature implementation. In addition, the

benchmark can be used by developers to learn how to

implement certain functions in the Android apps. For

researchers, it can be used for software reuse study,

programming practices, modularity, and other possible

research issues.

JOURNAL OF LATEX CLASS FILES 6

VI. SUPPORTING FUNCTIONS

In this section, we will introduce several additional opera-

tions already implemented in caIDE to help developers use the

benchmark easily. Besides two basic modules (annotation and

view), caIDE also allow developers to analyze the interactions

between features (Section VI-A), and extract product variants

from the annotated product line.

A. Interactions Between Features

caIDE can also help developers analyze the interactions

between features. Typically, relations and constraints between

features should be described in the feature model. However,

our caIDE can also help developers check the interactions and

guide developers to update the feature model. For instance,

if caIDE find that the execution of feature f1 may imply

the execution of feature f2 from the annotations, it will

suggest developers to add such a constraint in the feature

model. Therefore, the interaction module in our tool not

only helps developers view the interactions between features,

but also tries to provide suggestions for adding additional

relations in the feature model. Still, the suggestions provided

by the interaction module for fixing the feature model are

not compulsory and cannot be fully correct. This is because

that the suggestions are merely collected from the code base

and based on the program analysis, whereas the relations

between features should be designed and confirmed only by

the domain expert. The main purpose is to provide suggestions

for developers with limited domain knowledge.

Moreover, we will introduce all interactions currently sup-

ported in the caIDE.

• requires: in an SPL, if a feature uses data from another

feature, it builds a usage dependency from the data

consumer to its producer. In practice, caIDE will first

collect the implementations of each feature. Then, it will

check whether there exists a data flow from a feature

to another by traversing the program dependency graph

(PDG) of the app. The PDG of an app contains both data

flow dependency and control flow dependency [16].

• mutual exclude: the mutual exclude relation between two

features represents that two features cannot be in the same

product variant. For example, certain apps can be either in

off-line mode or on-line mode. Therefore, if an app in run

in an off-line mode, it always cannot in the online mode at

the same time. In practice, caIDE checks such relation by

detecting whether the executions of two features from two

aspects: (1) whether two features are booted by different

conditions; (2) whether two features are exclusive in

nature from the programming perspective. For example,

feature f_CHN is represented by a class Chinese and

class English represents feature f_GBR. In addition,

class Chinese and class English are inherited from

class Language. Therefore, it is possible that only one

feature between f_CHN and f_GBR can be existed in the

variant product.

Again, all these interactions are collected based on the an-

notations of features. The relations and constraints for features

can only be used as auxiliary information for domain experts

to refine the feature model. Domain experts have to confirm

these recommendations and make final decisions on their own.

However, this does not mean that caIDE make the incorrect

conclusions. Since caIDE makes the decision only reply on the

annotations for features. The relations and constraints between

features are more complex and require domain knowledge.

However, caIDE does not have such domain knowledge,

caIDE tries to predict the relations between features based

on annotations. Therefore, caIDE can only provide hints for

domain experts based on annotations.

B. Transforming the Annotation SPL to Variants

In addition, our caIDE can also help developers build the

variants from the annotated systems (benchmark). In SPL, a

variant represents a running system that can be used by end-

users directly [3]. It is built by configuring the SPL.

Recall the annotation scheme mentioned in SectionIV-A,

caIDE can help developers generate the target variants from

the annotated system. caIDE adopts an AST-write strategy to

build the variant. In general, it contains three steps. First, the

code is parsed into an AST. Second, the AST nodes in the AST

are assigned to different features as presented in the feature

annotation. Then, based on the feature module of the app and

the configuration given by the user, all AST nodes, that are

associated with unwanted features in the configuration, are

marked for removing from the AST.

VII. DISCUSSIONS

Furthermore, we intend to share the experience gained and

point out several handful lessons learned in this work.

Differences between desktop applications and mobile

apps in terms of reuse. We compare the annotation process

in mobile apps and desktop applications, we highlight the

following main differences between two types of applications.

• Call Graph vs. Window Transaction Graph. In most

desktop applications, the program starts from the main

method, and then goes though the call graph based on the

input context. The call graph describes the possible exe-

cution path of the program in a graph [17]. Whereas, in

the mobile context, the window transition graph (WTG) is

frequently used to analyze the execution of the app [18].

In the WTG, nodes represent windows and transitions

between windows are linked with edges. Transitions

are triggered by callbacks executed in the UI thread.

Therefore, to reuse components in apps, developers not

only have to take care of the execution logic, but also

carefully resolve all UI elements and events involved.

• Resources. Resources (UI elements, strings and layout)

are another major concern in app reuse comparing to

desktop applications. Specifically, not all desktop ap-

plications have graphical user interfaces (GUI) for end

users. Whereas the majority of apps have GUI provided

for users. Therefore, the approach for reusing apps must

carefully take care of resources. This rule is also suitable

for building a software product line for Android apps.

• Third-party API. To successfully reuse software arti-

facts in apps, all third-party APIs involved in the apps

JOURNAL OF LATEX CLASS FILES 7

should also be inspected. Specifically, developers have to

explore the functionality of those APIs, how these APIs

are used, how these APIs are cooperated with others,

and what parts of the program are affected. We highlight

the impact of third-party APIs is because that some-

times those APIs can change some existing programming

practices in Android. For example, library Butter Knife

(com.jakewharton:butterknife5) define a new ap-

proach to manage UI elements. It is apparent that an

approach for building SPL for other apps cannot be ap-

plied to the app with Butter Knife. Therefore, developers

have to cope with these special cases separately. Unlike

desktop application, it is hard to design a universal reuse

approach for all apps.

• Android API Compatibility. Android APIs are fre-

quently updated, which may introduce compatibility issue

in reuse. For example, after API 21, Android adopts the

camera2 API to use camera resource. The camera2 API

follows a different pattern comparing to camera1 in terms

of using camera.

Hence, researchers, who intend to propose approaches for

building SPL on Android apps, have to take into account the

differences between mobile apps and desktop applications.

That also means that we cannot directly use the existing

approaches in software reuse and software product line within

the mobile context.

Extract product variants from annotation product line.

In addition, we can use caIDE to extract product variants

from the annotation product line (benchmark). As mentioned

in Section VI-B, caIDE also provides such functions to allow

developers to extract the product variants from the annotation

product line automatically. By conducting such experiments,

we found that even caIDE can create the variant automatically,

some additional efforts are still required from developers.

The additional task is mainly about fixing the UI. For ex-

ample, if we remove an activity in a variant based on the

configuration, the button, that triggers this activity, will

become invalid. Therefore, developers have to fix the code

fragments related to the button. In caIDE, we leave this part

for developers based on two concerns: (1) developers may

want to redesign the UI and layout; and (2) rather than fixing

the UI, developers can also redesign the execution logic for

the variant product and keep the UI unchanged.

VIII. CONCLUSION

In this paper, we presented caIDE, an Android Studio

plugin, and a benchmark for supporting reuse software arte-

facts in app on feature location. The benchmark is based

on several existing android apps and is designed to support

research and programming practice on software reuse in the

context of software product line. The benchmark can help

researchers conduct reuse studies on apps rather than desktop

applications. With caIDE plugin, users can directly operate on

the benchmark to build the variant product or even release

their own benchmarks with our tool. In the future, we intend

to extend the caIDE to support more programming languages

5Butter Knife: http://jakewharton.github.io/butterknife/

used in app development, including Kolin, python, and even

native C++. In addition, we will release more benchmark for

other programming languages.

REFERENCES

[1] I. J. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger, and A. E.
Hassan, “A large-scale empirical study on software reuse in mobile
apps,” IEEE Software, vol. 31, no. 2, pp. 78–86, 2014.

[2] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey of app
store analysis for software engineering,” IEEE Transactions on Software

Engineering, vol. 43, no. 9, pp. 817–847, 2017.
[3] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software Product Line

Engineering: Foundations, Principles and Techniques, 2005.
[4] R. Abdalkareem, E. Shihab, and J. Rilling, “On code reuse from

stackoverflow: An exploratory study on android apps,” Information and
Software Technology, vol. 88, pp. 148 – 158, 2017.

[5] L. Li, D. Li, T. F. Bissyand, J. Klein, Y. L. Traon, D. Lo, and
L. Cavallaro, “Understanding android app piggybacking: A systematic
study of malicious code grafting,” IEEE Transactions on Information
Forensics and Security, vol. 12, no. 6, pp. 1269–1284, 2017.

[6] D. Poshyvanyk, Y. Gueheneuc, A. Marcus, G. Antoniol, and V. Rajlich,
“Feature location using probabilistic ranking of methods based on
execution scenarios and information retrieval,” IEEE Transactions on

Software Engineering, vol. 33, no. 6, pp. 420–432, 2007.
[7] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. Le Traon,

“Bottom-up adoption of software product lines: A generic and extensible
approach,” in Proceedings of the 19th International Conference on

Software Product Line, 2015, pp. 101–110.
[8] J. Martinez, T. Ziadi, T. F. Bissyand, J. Klein, and Y. l. Traon,

“Automating the extraction of model-based software product lines from
model variants (t),” in 2015 30th IEEE/ACM International Conference

on Automated Software Engineering (ASE), 2015, pp. 396–406.
[9] D. Batory, “Feature models, grammars, and propositional formulas,” in

Software Product Lines, H. Obbink and K. Pohl, Eds., 2005, pp. 7–20.
[10] S. She, R. Lotufo, T. Berger, A. Wäsowski, and K. Czarnecki, “Reverse

engineering feature models,” in Proceedings of the 33rd International

Conference on Software Engineering (ICSE), 2011, pp. 461–470.
[11] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in software

product lines,” in Proceedings of the 30th International Conference on

Software Engineering, ser. ICSE ’08, 2008, pp. 311–320.
[12] J. Sincero, R. Tartler, D. Lohmann, and W. Schröder-Preikschat, “Ef-

ficient extraction and analysis of preprocessor-based variability,” SIG-

PLAN Not., vol. 46, no. 2, pp. 33–42, 2010.
[13] M. V. Couto, M. T. Valente, and E. Figueiredo, “Extracting software

product lines: A case study using conditional compilation,” in 2011

15th European Conference on Software Maintenance and Reengineering,
2011, pp. 191–200.

[14] J. Feigenspan, C. Kästner, S. Apel, J. Liebig, M. Schulze, R. Dachselt,
M. Papendieck, T. Leich, and G. Saake, “Do background colors im-
prove program comprehension in the #ifdef hell?” Empirical Software

Engineering, vol. 18, no. 4, pp. 699–745, 2013.
[15] Y. Tang and H. Leung, “Sticprob: A novel feature mining approach using

conditional probability,” in 2017 IEEE 24th International Conference

on Software Analysis, Evolution and Reengineering (SANER), 2017, pp.
45–55.

[16] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Trans. Program. Lang. Syst.,
vol. 9, no. 3, pp. 319–349, 1987.

[17] D. Grove, G. DeFouw, J. Dean, and C. Chambers, “Call graph con-
struction in object-oriented languages,” in Proceedings of the 12th

ACM SIGPLAN Conference on Object-oriented Programming, Systems,

Languages, and Applications, ser. OOPSLA ’97, 1997, pp. 108–124.
[18] S. Yang, H. Zhang, H. Wu, Y. Wang, D. Yan, and A. Rountev,

“Static window transition graphs for android,” in 2015 30th IEEE/ACM

International Conference on Automated Software Engineering (ASE),
2015, pp. 658–668.

http://jakewharton.github.io/butterknife/

	Background
	Benchmark Construction and caIDE
	Feature and Feature Model
	Feature and Feature Identification
	Building Feature Model

	Feature Location
	Annotation Scheme
	Feature Location

	Benchmark
	Target Apps
	Features and Feature Model
	Granularity
	Usage of Benchmark

	Supporting Functions
	Interactions Between Features
	Transforming the Annotation SPL to Variants

	Discussions
	Conclusion
	References

