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Abstract—Software Product Line Engineering is a key ap-
proach to construct applications with systematical reuse of archi-
tecture, documents and other relevant components. To migrate
legacy software into a product line system, it is essential to
identify the code segments that should be constructed as features
from the source base. However, this could be an error-prone and
complicated task, as it involves exploring a complex structure
and extracting the relations between different components within
a system. And normally, representing structural information
of a program in a mathematical way should be a promising
direction to investigate. We improve this situation by proposing
a probability-based approach named StiCProb to capture source
code fragments for feature concerned, which inherently provides
a conditional probability to describe the closeness between two
programming elements. In the case study, we conduct feature
mining on several legacy systems, to compare our approach with
other related approaches. As demonstrated in our experiment,
our approach could support developers to locate features within
legacy successfully with a better performance of 83% for preci-
sion and 41% for recall.

Index Terms—Software product line, variability, feature min-
ing, program slicing.

I. INTRODUCTION

Software Product Line Engineering(SPLE) [1] is regarded

as an efficient approach to provide a set of systems with

tailored-made services within a domain. Successful adoption

of product lines allows developers to provide applications with

strong advantages in terms of time to market, maintenance

efforts and development costs. With systematical reuse of

code and design, a product line could generate several product

variants under different configuration context. For example, in

Linux kernel system, 32-bit and 64-bit processing schemas are

provided to users. Simply, it can be regarded as two systems,

one for 32-bit and another for 64-bit.

In product line engineering, features are used to describe all

behaviors of a system [2]. For instance, a business transaction

system is normally customized to realize different banking

services in various currencies, with each service deemed

as a feature. Unfortunately, given the complexity and high

workload of developing many variants of a system and extra

maintenance and configuration work required, this normal

process is often impractical and error-prone. A more practical

and simplified approach could be migrating legacy source into

a product line, since most modules in legacy could be reused

and limited development work is required. To construct a

product line system based on a legacy source, retrieving the

features and associated code would be an essential first step.

Currently, most works in constructing a product line are

primarily concentrated on solutions on analyzing product

lines and building product lines from an abstract aspect, for

instance, from architecture level or module, including model

checking, refactoring and so forth, to analyze variability in

the product line [3]–[5]. The main problem of these coarse-

granularity approaches in terms of constructing a product line

is that they cannot recover a feature’s implementation in a fine

granularity matter. Like, inside a method, statements might

belong to various features.

Our Contribution. In this paper, we propose a fine-

granularity approach, which describes the closeness between

programing elements (like, AST node) using conditional prob-

ability and the probability values are then used as indicators

to guide the mining of features in our context. To further

assess our approach, we developed an Eclipse plug-in tool

named Loong1 to obtain code fragments from the code base

for the feature concerned, and we compared the performance

with three other feature mining approaches, including type

check, topology analysis and text comparison, with several

case studies.

Organization. This paper is organized as follows. Section

II provides a bird’s eye view of feature mining process.

Section III introduces the underlying model, and two research

questions are raised. Our approach is introduced and explained

in Section IV. We conduct case studies and exhibit our

experimental results in Section V and VI respectively and

discuss the results in Section VII. Related work is introduced

in Section VIII, and we conclude our paper in Section IX.

II. FEATURE MINING PROCESS OVERVIEW

The procedure of detecting potential variants from legacy

could be deemed as identifying assets from an application.

Particularly, in this work, we focus on deriving features’

implementation from the source base.

As illustrated in Fig.1, the whole feature mining process

consists of four steps as follows:

1Loong: available at http://www.chrisyttang.org/loong/

http://www.chrisyttang.org/loong/
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Fig. 1. Feature mining process overview

1) A domain expert models the product and describes fea-

tures and their underlying relationships and constraints

in a feature model.

2) Moving on, for each feature, developers have to select

an initial seed to represent this feature. For example, a

method named “Lock” could be used to represent feature

locking.

3) For each feature, the feature mining strategy expands the

known code range for the feature iteratively until some

stopping criteria are met.

4) Finally, developers rewrite code fragments with different

configurations. That is, selecting some variants from the

variants set to generate members in the product family.

Within this process, we focus on Step 3, which is obtaining

all code that implement a feature starting with an input seed,

and a feature relation model defined by the domain expert.

As mentioned in Step 2, with the selection of seed for

each feature, the feature mining task has been transformed

to finding all related code fragments iteratively based on the

given seed.

III. UNDERLYING MODEL

A. Basis

Programming Elements. To retrieve code fragments that

describe variants and their internal relationships, we use a

graph-base representation of the system, in which nodes denote

programming elements and links stand for dependences. Cur-

rently most source-based tools (such as Suade [6] and Cerberus

[7]) merely focus on methods and fields, which may lead to

inaccurate results. In our approach, programming elements

include local variables, fields, statements, types, methods,

classes and interfaces. We denote the set of programming

elements in a system as E. Technically, in this paper, we

use abstract syntax tree(AST) nodes to represent programming

elements.

Among these programming elements, relationship

(R ⊆ E × E) indicates how they are linked and impact

each other. Contain relation shows the hierarchical structure

between elements. For instance, import a package or API in

a class (import java.util.Map;). This relation could

be discovered in class import (API import is covered), class

instance declaration, enumeration, and inner class. Reference

denotes a use relation, which could be method invocation,

field use and type reference. For example, assigning a

local variable cfg to a field controlFlowGraph using

this.controlFlowGraph = cfg, where a field named

controlFlowGraph is accessed and updated with local

variable cfg. In addition, usage provides an indirect

reference between elements, namely, one element might

reference another’s attributes or functions. This relationship

mainly includes cast, instanceof, super and child class.

Feature. In our product-line setting, we require additional

domain knowledge by defining the feature model [1], which

describes how features enclosed in products are organized

and their underlying dependencies and constrains. The fea-

ture model consists of a set of features (F ) and relations

between these features. Two fundamental relations: mutual

exclusion and implications are frequently used in feature mod-

els. Specifically, mutual exclusion (M ⊆ F × F ) denotes two

features are mutually excluded and code segments belonging

to one feature cannot be part of another. Whereas, implications

(⇒⊆ F × F ), which initially come from the “if feature f

is included in some variants, f ’s implied feature g must be

covered in these variants”, is useful in terms of setting seeds,

since it would be redundant to provide seeds for an implied

feature. Implication relation is a typical relation between

features in a hierarchical relationship.

Annotation. Annotation describes the mapping between

a feature and programming elements. That is, annotation

(A ⊆ E × F ) shows programming elements have been as-

signed to features during the seed selection. Each program-

ming element could be attached to multiple features during the

mining. For the relations (⇒ and M ) mentioned, we extend the

annotation as A∗ = {(e, f) | (e, g) ∈ A, g ⇒∗ f} to represent

the closure of A with implication relation, where⇒∗ is the re-

flexive closure representation of⇒. In detail, a feature f ’s⇒∗

relation contains all features that implies f , that is (g ⇒∗ f),
along with f itself. Thereby, A∗ relation contains two part: (1)

all elements that are directly annotated to feature f as (e, f);
and (2) all elements that are indirectly annotated to feature f

using implications relation as {(e, f) | (e, g) ∈ A, g ⇒ f}.

B. Modelling Closeness between Element and Feature

RQ1: How to measure the probability that a programming

element should be annotated to a certain feature?

Considering the whole process of feature mining approach

as steps of iteratively annotating programming elements to

feature, this section starts from raising a question on how to

measure the probability that a programming element should

be annotated to a certain feature. Moreover, we introduce the

concept of annotation state and feature-element correlation

coefficient for modeling this question.

Definition 1 (Annotation State). An annotation state of a

feature f is defined as a set of elements, that have been

annotated to f is represented by

S (A∗, f, i) = {e| (e, f) ∈ A∗}

Here, i represent a certain annotation iteration. Specifically,

the feature mining process for a single feature could be deemed

as a series of transformation of annotation states as shown

in Fig.3. In detail, at the beginning, seeds are selected and
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Fig. 2. Example program P with its control dependency graph, data dependency graph, program dependency graph, and the slicing scope for node 3.

annotated to the feature. Then, one or more programming

elements are annotated to this feature at each iteration auto-

matically, which transforms the current annotation state to its

immediate successor, such as from S (A∗, f, i) to S (A∗, f, j)
in the example. Thereby, the mining process for a feature f

could be regarded as a series of annotation state transformation

from S (A∗, f, 0) to S (A∗, f, Stp). The symbol S (A∗, f, 0)
represents the initial state in which only seeds are annotated to

f . The state S (A∗, f, Stp) is the final state, and it contains all

code fragments that have been annotated to f when the mining

process stops. For an adjacent transformation, like from anno-

tation state i to j, the feature mining approach will look up all

candidate elements, which could be annotated to the current

feature and annotate those with high likelihood. Therefore, we

define the feature-element correlation coefficient to express

this likelihood.

Annotation
State (i)

Annotation
State (j)

start end

mining process for a single feature

Candidate

Elements

Fig. 3. The general process of feature annotation

Definition 2 (Feature-Element Correlation Coefficient). A

measure of the probability that a programming element e

should be annotated to feature f for an annotation state

S (A∗, f, i), and is represented in the form of a conditional

probability as

p (e|S (A∗, f, i))

Given the correlation coefficient represented as

p (e|S (A∗, f, i)), where S (A∗, f, i) is a set of programming

elements at ith iteration has been annotated to f , there

should be a method to measure “closeness” between two

programming elements. Here, “closeness” indicates the degree

that two programming elements belong to the same feature.

And this conditional probability representation is designed to

stimulate this “closeness”.

Therefore, the feature-element correlation coefficient could

be regarded as the probability required in RQ1. To compute

this correlation coefficient, another research question, that is

how to capture the “closeness” between two programming

elements, should be answered first.

C. Modelling Closeness between Elements

RQ2: How to provide a mathematical representation to

capture the “closeness” between two programming elements?

For the research question (RQ2) and requirements presented

above, we introduce two key concepts, slicing scope and

binding.

Definition 3 (Slicing Scope). For a programming element, its

slicing scope is defined as

sscope (e) = e ∪
{

s|s
df
→ e ∨ s

cf
→ e, s ∈ E

}

,

where s
df
→ e represents a data dependency flow from s to e

and s
cf
→ e shows a control dependency flow from s to e.

Example. In the definition of slicing scope, the control

dependency graph (CDG) is a data structure which describes

the control dependencies for operations in a program [8]. In

addition, the data dependency graph (DDG) shows data flow

dependencies between statements [9]. A program dependency

graph (PDG) contains all nodes defined in CDG and DDG,

and edges in PDG are all inherited from CDG and DDG.

As shown in Fig.2, the PDG is used to compute the slicing

scope. For instance, for the programming element i<5 (line:

3), we obtain the slicing scope as a set of colored nodes

sscope(3) = {en, 2, 3, 8}. The entry en is covered by refer-

encing the control dependency and node 2 and 8 are included

due to data dependency.

Theoretically, for a given a program p, the slicing scope of

a programming element e in p returns a program slice with

respect to a slicing criterion on that element e. Program slicing

[10], [11] is a well-adopted program transformation approach

with respect to a given slicing criterion. Since the definition

1Tool JayFX (http://cs.mcgill.ca/~swevo/jayfx/) is integrated in our tool to
extract and build CDG and PDG

http://cs.mcgill.ca/~swevo/jayfx/


main(){

    A a = new A();

    z = wrapper(a);

}

wrapper (A b){

    y = bar(b);

    return y;

}

bar (A c){

    x = c.f

    return x;

}

ContextProgram

⟪? | [∅]⟫

⟪b | [b]⟫

⟪a | [∅]⟫

⟪c | [c]⟫

⟪c.f,c | [c]⟫

⟪? | [b]⟫

⟪c.f|[c]⟫

⟪b.f | [b]⟫

⟪a,a.f | [∅]⟫

Path Edge: Callback :

Fig. 4. Example of context transformation in method invocation

of slicing scope follows the same principle in building a

program slice, program slicing serves as a theoretic footstone

of concepts we defined and their extensions. Besides, it also

indicates that approaches for building the program slice could

be reused to obtain the slicing scope in our paper. Specifically,

we use the program slicing approach defined in [10] to find

the slicing scope with a given programming element.

Definition 4 (Binding). For a programming element e, its

binding bind (e) is defined as all variables and fields defined

or used in e’s slicing scope as

bind(e) = def(e) ∪ use(e)

Intuitively, our binding definition of a programming element

e could represent e in a broad sense, considering all variables

or fields, for both use and define, are covered. And their types

are covered, since the type information is binding with the pro-

gramming element. However, it is still insufficient to describe a

complex relation between two programming elements (m,n)
by just using their bindings (bind (m) , bind (n)). Such as,

method invocation, class inheritance, and method overriding.

To resolve this, we further reinforce the binding definition by

adding another factor “input context” to describe how given

one programming element affects the current element. For

example, for a call from method m to n, the call site in m is

an “input context” for n. And other methods may also invoke

n, and each caller brings its unique “input context” to n.

Definition 5 (Context Binding). For a programming element e,

its context binding contbind(e, [c]) is defined as all variables

and fields defined (def (e)) or used (use (e)) in e’s slicing

scope under an input context from programming element c.

In context binding, context gives an unique identifier for a

programming element in terms of runtime. For example, given

two context a.f() and b.f() give two different cases: one is

function f is invoked by instance a and another is by b. Note

that the inherent properties are dependent on object-oriented

languages, as different programming languages have their own

unique specification for implementing them. For example, in

Python, multiple inheritance from classes is allowed, which is

not allowed in Java. Here, we use the language specification

defined in Java for illustration.

Method Invocation. Method invocation could bring context

change especially when parameters are passed [12] from a call

site to its callee. A callsite l=r0.m(r1, ..., rn) will connect

the parameters in the call site with arguments in invoked

method m and m receives the run-time parameters (r1, ..., rn)

from this call site. Therefore, the invoked method obtains a

unique input context from the call site. To resolve this, we

follow Andersen’s [13] context-aware analysis and dispatch

the binding of the call site into callee as:

contbind(m, [r1, ..., rn]) = dispatch (pi = ri)→ bind (m) ,

where the context [r1, r2, ...rn] is dispatched to method m by

mapping all parameters in the call site to arguments in the

callee.

Example. As the example shown in Fig.4, we use the label

(≪ curbind| [context] ≫) to mark binding computed at a

program point. In this tag, curbind represents the context

binding collected at this program point, and [context] shows

the input context to this method. For example, in Fig.4, method

main gives a context [a] to its callee wrapper. In wrapper,

this context [a] is dispatched to the method body of wrapper

as a → b. And this initial context [a] will continue passing

to bar from the method wrapper. Take the method bar

as an example, its context binding contbind (bar, [a]), which

represents the call path main→wrapper→bar, is {a.f, a}.
Here we use [a] just to provide a simplified representation

of the context given by main; in practice, we use unique

identifiers to encode contexts from different sources.

def(m) use(m) def(p(1))∼>use(m)

def(p(2))∼>use(m)

def(p(n))∼>use(m)def(c)-def(m)

def(m)∪use(m)

Fig. 5. Example of context binding in overriding

Overriding. The context of an overriding method m defined

in class c, is defined by all classes or interfaces that c

inherited from. The context binding of a method overriding

contbind (m) in a class c contains two parts: (1) programming

elements defined and used in m, and (2) elements defined in

c’s parent class or interface and used in m. Therefore, a general

representation of the context binding of an overriding method

could be denoted as:

contbind (m, [p1, · · · , pn]) = def (m)∪
n
⋃

i=1

(use(m) def (pi))

We illustrate this formula using the example in Fig.5. Based

on our definition on binding, it contains two parts: the variables

and fields defined and used in m. Particularly, the variables

defined in the overriding method could be directly represented



as def (m). Whereas, for the variables and fields used in m,

they potentially come from three sources: (1) variables defined

and used in method m as shown in the overlap area; (2)

fields defined in class c as shown by def (c)− def (m); and

(3) all fields inherited from its parent classes and interfaces

p1, p2, · · · pn, where the symbol  is used to specify the

source of the context. For example, def (p (i))  def (m)
indicates all variables or fields used in m but defined in pi.

Example. Considering a fragment of overriding given

in Fig.6, class FlyingCar is inherited from interface

OperateCar. startEngine’s binding contains

two “encryptedValue” in different contexts, one is

defined in FlyingCar.startEngine, and another

in OperateCar. Thereby, the context binding of method

startEngine (contextbind(startEngine)) should be

{OperateCar.encryptedValue,encryptedValue}.

1 public class FlyingCar implements OperateCar {

2    public int startEngine(int encryptedValue) {

3        OperateCar.super.startEngine(OperateCar.encryptedValue);

4    }

5 }

——————————————————————————————————
6 public interface OperateCar {

7    int encryptedValue = 1;

8    default public int startEngine(int value) {…}

9 }

Fig. 6. A sample code of overriding

Inheritance. Different from overriding, in inheritance, we

are interested in providing a context binding for the inherited

class. The context binding of the inherited class c consists of

the binding in c and all fields defined in all its parent classes

and interfaces that c inherited from. It is defined as:

contbind (c, [p1, · · · , pn]) = bind (c) ∪

n
⋃

i=1

def(pi),

where def(pi) represents all fields defined in pi. The context

binding of inherited class contains all fields inherited from pi,

along with all the variables and fields originally defined in c,

as bind (c).

Now, we are able to provide a representation of an annota-

tion status S (A∗, f, i) of the feature f as

S (A∗, f, i) =

a∈S(A∗,f,i)
⋃

a

contextbind(a),

which is a collection of context bindings of all programming

elements within the annotation status S (A∗, f, i). However, in

our model, p (e|S (A∗, f, i)) is an exact value to indicate the

probability that a programming element belongs to the feature

f based on the annotation status S (A∗, f, i). Therefore, in

the coming section, we will show how our StiCProb works in

exploring code fragments for features, and how the condition

probability p (e|S (A∗, f, i)) serves as a major component of

the mining process.

IV. StiCProb APPROACH

We first provide an overview of the whole StiCProb ap-

proach, and then all its steps. Specifically, it contains three

steps.

1) The first step is to build a database for the system, which

contains all programming elements and underlying re-

lations between them. This part has been covered in

Section III-A;

2) The second step is to build a uniqueness table, in which

the major task is to show the uniqueness between two

programming elements with a relation.

3) At last, we use the feature-element correlation coeffi-

cient defined as an indicator to mine code fragments for

features concerned.

The key characteristics of our approach is it learns the prob-

ability from the context of each programming element (step

2) to seek potential elements to annotate. For example, given

a call relation from method m to n and another call from j

to n, if there are 5 call relations start from m and only 2 call

relations start from j, j should be more unique to n in terms

of call relation. And StiCProb is able to collect this kind of

context information, which further contributes to the feature

mining.

Knowing that RQ1 can be answered only if RQ2 is an-

swered, this section starts from solving RQ2.

A. Building a Uniqueness Table.

We reserve a uniqueness table for the system to describe

the cross uniqueness for any two programming element(s,t)

under a relation r (s
r
→ t). In detail, a relation table could be

represented as a five-tuple U (E, T,R, Pforward, Pbackward).
For a specific element u ∈ U , it is represented as

u (s, t, r, pforward, pbackward), which means there is a relation

r from the programming element s to t. The uniqueness of

t to s for relation r if s has been annotated to feature f

is represented by pforward. Thereby, we define probability

pforward as

pforward

(

s
r
→ t|(s, f) ∈ A∗

)

=
contbind (t, [s])

contbind (s)
,

where contbind (t, [s]) represents the context binding of t

given a context from s according to our previous definition on

contbind. Therefore, the definition of pforward could show

the uniqueness of s to t for relation r. We could define the

probability pbackward as

pbackward

(

s
r
→ t|(t, f) ∈ A∗

)

=
contbind (t, [s])

⋃

i
r

→t
contbind(t, [i])

,

where
⋃

i
r

→t
contbind(t, [i]) represents a collection of context

binding from all programming elements, which have relation

r with t.

Example. As shown in Fig.7, for the call from s to t (s
call
→

t), the forward probability pforward

(

s
call
→ t|(s, f) ∈ A∗

)

de-

scribes the uniqueness of t to s. That is, there might be multi-

ple call relations starting from s as shown in the example, the



value of pforward indicates the weight of the call from s to t in

terms of all method call relations starting from s. On contrast,

the backward probability pbackward

(

s
call
→ t|(t, f) ∈ A∗

)

de-

picts the uniqueness of s to t as the weight of the call from s

to t referencing all method-call relations that end with t.

call
s

t

backward forward

Fig. 7. An example of a call relation

The strength of forward and backward probability for a

relation (s
r
→ t) from s to t is that they can capture s

and r’s surrounding information respectively. Specifically, the

backward probability pbackward could explore the relative

context information of t as the left side shown in Fig.7. And

the forward probability pforward could explore the relative

context information of s as the right side shown in Fig.7.

Thereby, with the forward and backward probability, the

research question RQ2 is solved. Moving on, we will answer

RQ1 by introducing the detail of StiCProb.

B. StiCProb

candidate set

f - annotation state (i)

f - annotation state (i+1)

me

e

m
n

Fig. 8. Illustration of StiCProb

We first use Fig.8 to illustrate the underlying idea of

StiCProb. As introduced previously (see Section III), the

mining process for a feature could be regarded as a series

of transformation for annotation state. For a feature f , at the

beginning, seeds are selected for this feature, which gives the

initial annotation state of f as S (A∗, f) = seeds. Iteratively,

the annotation state transforms from one to another and at

each transformation one or more programming elements are

annotated to f . For an annotate state transformation, as shown

in Fig.8, the candidate set covers all elements that have direct

relations with elements in annotation state (i). And then

StiCProb categorizes the candidate set into two parts. The first

part is relation starts from an element in the candidate set, like

m→ e, with the backward probability pbackward to represent

the closeness of this relation, which indicates the uniqueness

of m to e. Another is relation starts from elements in the

annotation state and ends with an element inside the candidate

set, such as e → n, with the forward probability pforward to

describe this relation, which shows the uniqueness of n to e.

In other words, StiCProb assesses all candidates by giving a

probability description of how they are unique to elements in

the current annotation state.

The pseudo code description of StiCProb approach is shown

in Alg.1. The detailed introduction of StiCProb is separated

into three components: input, main procedure and output.

Algorithm 1: StiCProb feature mining approach

Input: seeds, fm, threshold, U

Output: all annotation states for features Sset in fm

1 Create a set of annotation states as

Sset =
⋃f∈features

f S (A∗, f);

2 Assign seeds to each feature as S (A∗, f) = seeds (f);
3 Create feature set features with all features in fm;

4 while features not NULL do

5 for feature f in features do

6 Create set waitList = ∅;

7 Create candidate set C (S, f) = ∅ for f ;

8 Add all elements have relations with elements in

S (A∗, f) to C (S, f) ; // initialize C (S, f)
9 for element m in C (S, f) do

10 if there is a relation r from m to the element

e in S (A∗, f) then

11 Let value =

pbackward

(

m
r
→ e|(e, f) ∈ A∗

)

;

12 else

13 Let value =

pforward

(

e
r
→ m|(e, f) ∈ A∗

)

;

14 if value > threshold then

15 Add m to waitList;

16 Update S (A∗, f)← S (A∗, f) ∪ waitList;

17 if StopCheck(f) is TRUE then

18 Remove f from features;

19 return Sset;

Input. The input for algorithm StiCProb is the program,

containing:

1) Feature model (fm): A feature model is given to show

all features required to mine and their underlying rela-

tions. Proposing approaches to obtain the feature model

is out of scope of this paper. In the case study, we adopt

the feature model defined for subject systems in other

research works;

2) Feature seeds (seeds): The seeds (represented by seeds

in algorithm) selected for each feature. For each feature,

one or more programming elements are selected as seeds

to represent a feature. We leave the discussion on how to

select seeds for a feature in section V-D: Experimental

Setting;

3) threshold: It is used to decide whether a programming

element could be annotated to a feature;



4) Uniqueness table (U ): The uniqueness table U is built

for all element-relation tuples (m,n, r), where there is

a relation r from m to n.

Main procedure. We will introduce how StiCProb con-

tributes to feature mining. Due to the length of the algorithm,

we separate it into four sections and present them respectively.

1) Line 1 − 3: For each feature, an annotation state

S (A∗, f, i) is created. And a set Sset is used to store

all these annotation states. Each annotation state is

initialized with seeds for feature f .

2) Line 4 − 8: For each feature, a candidate set C is

created by adding all elements having relations with the

elements in the current annotation state S. And relations

could be covered in both directions. That is, an element

that either has a relation target at an element inside S

or has a relation from an element inside S should be

covered in C.

3) Line 9 − 15: Following the previous step, it iterates

over all elements in the candidate set. If there is a

relation from an element m within the candidate set to

an element e in the annotation state (Line 10 − 11),

the backward probability pbackward is used to capture

the relation. For opposite direction, the forward proba-

bility is used. In addition, Line 10 − 13 is the kernel

of StiCProb, since it shows how the feature-element

correlation coefficient (see Def.2) is implemented in our

approach. It also gives the answer to research question

RQ1.

4) Line 16 − 18: Line 16 will update the annotation state

for each feature by adding the waitList, which contains

all elements that should be annotated to this feature.

The rest (Line 17− 18) checks whether it can stop the

current mining process using a function StopCheck(f).
The concrete description of function StopCheck is

introduced in section IV-C: Stopping Criteria.

Output. The output returns the set (Sset) of all annotation

states for all features in the feature model. At this step, the

feature mining process for all features are finished and each

annotation state S (A∗, f, Stp) gives all elements that have

been annotated to feature f .

C. Stopping Criteria

Stopping criteria is shown as the StopCheck function in

Alg.1. In this paper, we use the threshold as an indicator

to stop the mining process for a feature. For a feature f ,

if all value (Line 11, 13) computed in algorithm are lower

than the threshold defined, the mining process is halted. The

value value is computed based on either forward or backward

probability to determine whether a candidate element should

be annotated to a certain feature.

V. CASE STUDIES

A. Subject Systems

Note that not all legacy systems are qualified for our

experiment, as we need a specific benchmark for the system

be available. The benchmark contains a set of files that

describe how programming elements are mapped to features.

Without the benchmark, it would not be possible to assess the

performance of our approach. Thereby, we use those systems

that have been analysed and learned in other works to exclude

the bias in creating the benchmark on our own. However, this,

in return, limits the scope of subject systems. As a result, we

carefully select four different subject systems that have been

developed and well-researched by others, from academic and

industrial systems.

• Prevayler2. An open-source object persistence library for

Java with 8009 LOC. It is a well recognized product

for product line research [14], [15], although it is not

originally developed as a product line application. It

contains five features: Censor, Gzip,Monitor, Replication,

and Snapshot with a dependency Censor⇒ Snapshot.

• MobileMedia. Originally developed by University of

Lancester, UK as a product line with 4653 LOC [16].

It contains several features: Photo, Music, SMS Transfer,

Copy Media, Favourites, and Sorting. The dependencies

include: Photo∨Music, SMSTransfer⇒ Photo and

MediaT ransfer⇔ (SMS Transfer ∨ Copy Media) .

• Lampiro3. An open-source instant-messaging client with

44584 LOC. Here feature Compression without depen-

dency is selected, as others are affected by limited code

fragments or cannot be deemed as debugging features.

Here, debugging feature represents feature provides a

“invokable” service to end-users rather than assisting the

workflow. Some other small features have already been

tested in other cases. Lampiro is a qualified candidate

because it is originally developed as a product line with

conditional compilation.

• ArgoUML4 with 120 KLOC, provides modeling support

for UML 1.4 diagram and supports multiple program-

ming languages. In ArgoUML, following seven features

are selected: Cognitive, Activity Diagram, StateDiagram,

Collaboration Diagram, Sequence Diagram, Use Case

Diagram, and Deployment Diagram from an empirical

research [17]. The feature Logging is not covered in

our mining work, as it is not a callable feature for

end customers. In another study [14], a dependency

ActivityDiagram ⇒ StateDiagram is added. In our

experiment, we adopt this setting.

B. Related Approaches for Comparison

We carefully select 3 related approaches used in [18] for

performance comparison.

• Type System. Type system [19] is initially designed to

bring a type-checking system to product line that ensures

all variant products generated are type safe. It has been

re-implemented to cope with the feature mining task,

2Prevayler: available at http://prevayler.org
3Lampiro v9.6.0 available at https://code.google.com/archive/p/lampiro/
4ArgoUML: available at: http://argouml.tigris.org

http://prevayler.org
https://code.google.com/archive/p/lampiro/
http://argouml.tigris.org


TABLE I
STICPROB PERFORMANCE WITH threshold = 0.6

Feature Size Mining Results Feature Size Mining Results
Project Feature LOC FR FI IT Recall Prec. Project Feature LOC FR FI IT Recall Prec.

Prevayler Censor 105 10 5 3 17% 60% MobileM. M.Transfer 153 4 3 14 97% 94%
Gzip 165 4 4 3 16% 100% Lampiro Compre. 5155 33 20 34 40% 82%
Monitor 240 19 8 2 17% 82% ArgoUML Cognitive 16319 285 233 127 70% 92%
Replication 1487 37 28 26 79% 98% Activity 2282 115 80 17 26% 74%
Snapshot 263 29 5 9 42% 99% State 3917 115 88 18 33% 82%

MobileM. CopyMedia 79 18 6 4 43% 95% Collab. 1579 53 40 40 17% 72%
Sorting 85 20 6 4 32% 100% Sequence 5379 65 53 98 33% 89%
Favorites 63 18 6 12 20% 100% Use-Case 2712 59 49 39 19% 70%
SMS Trans. 714 26 14 23 91% 49% Deployment 3147 57 47 36 22% 67%
Music 709 38 16 4 39% 90%
Photo 493 35 13 5 63% 61%

LOC: lines of code, FR: count of distinct code fragments;IT: number of iteration, Prec.: precision

and the underlying idea is to look up definition from

references. For example, if a type reference is annotated

to a feature f , the type declaration of this type should

also be annotated to f . The type system checks all these

relations, such as, from method invocation to declaration,

from variable/field access to its declaration, and from type

access to its declaration.

• Topology Analysis. Originally designed by Robillard [6]

and adjusted to the feature mining task in [18]. Topology

analysis explores all structural neighbors, such as caller

method and related fields, for a given programming

element. It then ranks related programming elements

according to two metrics specificity and reinforcement.

• Text Comparison. Text comparison defined in [18] re-

serves a vocabulary list for each feature. It ranks the

substring based on a relative weight and its occurrences.

C. Implementation

We have implemented our StiCProb and other related ap-

proaches in an Eclipse plug-in tool named Loong following the

feature mining process defined in Fig.1. We have released the

source code, a full tutorial for this tool, and experimental data

on the project host page: http://www.chrisyttang.org/loong/.

D. Experimental Setting

1) Defining Feature Model and Selecting Seeds: In princi-

ple, a domain expert should be involved in the experiment and

contribute to two parts: (1) defining the feature model for the

legacy system. That is, exploring features existed in the system

and the way they are organized and influence each other; and

(2) helping to select seeds for each feature. Therefore, the

domain knowledge on features and their relation will have

a significant impact on the performance of feature mining

approach. Considering our target is to verify StiCProb’s per-

formance, it will be wise to reduce all human bias by using the

feature model that has been well adapted and learned by other

research works and selecting seeds using automatic tools. In

this paper, we use the feature model built by other research

works and a tool named FLAT3 [20] to obtain the seeds for

each feature. This is done to exclude bias, and make the semi-

automatic (see Section III) process repeatable.

2) Other Settings: We list settings for other factors which

could influence the performance of feature mining approach

as follows.

• Number of seeds for each feature. As mentioned we

use FLAT3 to provide seeds for each feature. In the

experiment, we select the top three items returned by

FLAT3.

• Threshold. In StiCProb, we use a threshold of 0.6. Intu-

itively, a higher threshold will make the annotation more

precise and a lower one will annotate more programming

elements. Here, in the experiment, the threshold is set

to a median value and its influence on performance is

discussed later in section VII.

The first setting (number of seeds) is suitable for all ap-

proaches, including our StiCProb and other three related ap-

proaches. However, the second setting for threshold is specific

to StiCProb. With all these settings, we try to exclude the

possible biases in conducting our experiment in selecting seeds

and subject systems.

VI. EXPERIMENTAL RESULT

A. Measurement

Our definitions for recall and precision are specific to the

feature mining procedure. Our framework returns all lines

that could belong to the features at the statement level. In

a binary mapping context, a single statement could either

belong to a feature or not. Therefore, the recall should measure

how features’ implementations are recovered. On contrast, the

precision measures the degree that a feature mining algorithm

could provide correct recommendations. In our framework,

precision and recall are defined as:

Precision =
Correct recommendations

All recommendations provided
(1)

Recall =
Correct recommendations

Lines of code annotated in benchmark
(2)

Another indicator for comparison is f-measure, which mea-

sures the performance of a model regarding to both precision

and recall as: f-measure = 2∗Precision∗Recall
Precision+Recall

http://www.chrisyttang.org/loong/


B. Result

The experimental result is shown in Tab.I, where StiCProb

receives an average precision of 83% and an average recall

of 41% on four subject systems with a threshold of 0.6. Fur-

thermore, we compare SticProb with other approaches on all

four systems with the same experimental settings as depicted

in Fig.9. This performance generally gives a better result

comparing to type system (pre.:80%, recall:22%), topology

(pre.:69%, recall:33%), and text comparison (pre. 6%, recall:

84%) average.

TS: type system; SP: StiCProb(threshold = 0.6); TP: topology analysis; TC:
text comparison.

Fig. 9. Performance Comparison on Subject Systems

For the f-measure shown in Tab.II, StiCProb returns a

competitive performance in terms of both precision and recall.

TS: type system; SP: StiCProb(threshold = 0.6); TP: topology analysis; TC:
text comparison.

Fig. 10. Method comparison using notched box plot in recall

TABLE II
f −measure ON ALL APPROACHES

SP TS TP TC

f −measure 0.55 0.45 0.44 0.12

In addition, as the notched box plot for recall shown

in Fig.10, at 95% confidence interval of median, StiCProb

performs better than both type system and topology analysis

for most cases. From another aspect, the notched box plot for

precision in Fig.11 indicates that StiCProb works better than

both topology analysis and text comparison.

TS: type system; SP: StiCProb(threshold = 0.6); TP: topology analysis; TC:
text comparison.

Fig. 11. Method comparison using notched box plot in precision

Runtime Performance. We also evaluate the performance

in terms of run-time. We test all algorithms on a Mac(10.12)

machine with Intel i5 2.6GHz, 8G 1600 MHz DDR3, and

targeting on Eclipse 4.5 with JRE 7. The result is shown in

Tab.III.

TABLE III
RUNTIME PERFORMANCE (SECOND)

TS SP TP TC

Pervalyer 1 2 2 71

MobileMedia 2 2 3 21

Lampiro 1 29 13 135

ArgoUML 254 1500 1980 5415

In summary, based on the recall performance, all

methods could be ranked as TC (0.77,0.80,0.93) ≫
SP (0.29,0.33,0.53) ≫ TP (0.12,0.32,0.41) ≫ TS

(0.12,0.21,0.37). For precision performance, TS (0.66,0.92,1)

≫SP (0.71,0.85,0.96)≫ TP (0.42,0.84,0.95) ≫ TC

(0.02,0.02,0.11). Here, we use a three-element tuple

(first,median, third) to indicate the first quartile(first), the

median value(median) and the third quartile(third) of data.

We can conclude that StiCProb could return a competitive and

stable performance comparing to others. However, sometimes,

StriProb spends extra-time in generating binding and contexts,

which could be a potential drawback.

VII. DISCUSSION

Beyond the default settings, we investigate how the two

independent variables, seeds and threshold, influence the per-

formance. Due to space restriction, we provide a general

discussion on these factors and put the details on the project

webpage5.

A. Seeds

In our feature-mining process, the seeds could strongly

influence the performance. In our experiment, we adopted first

three items returned by FLAT3. By increasing the number of

seeds, the performance can hardly be improved and sometimes

becomes significantly worse. After a careful inspection on

seeds, we discovered the following principles, which could

be used to guide developers in seeds selection. First, seeds

recommended by FLAT3 might not be correct, which causes

the feature mining strategy performs poorly. That is, if the

5http://www.chrisyttang.org/loong/

http://www.chrisyttang.org/loong/


quality of seeds can be improved, the performance may im-

prove. Second, the seeds in coarse granularity could improve

the recall, but sometimes at the cost of precision.

B. Threshold

In StiCProb, we select a threshold of 0.6 as the stopping

criteria. That is, for an iteration, if all candidates cannot reach

the threshold, the mining process for the current feature will

stop. Intuitively, by setting a higher threshold, the precision

can reach a higher value, and the recall drops down. However,

we found that increasing the threshold, the precision is not

significantly improved. For example, in Prevalyer, with a

change of threshold from 0.6 to 0.8, the precision merely

increases to 85% from 83%. That is mainly due to the

use of forward and backward probabilities. And it makes

the threshold contributes less to the performance since the

forward and backward probabilities are directly decided by

the structure of the system.

C. Threats to Validity

Construct and Internal Validity. The measure of perfor-

mance is based on the quality of benchmarks. The benchmarks

are selected from systems that have been researched by others.

Nevertheless, it is possible that the selected benchmarks might

not be entirely accurate. The measurements on recall and

precision are based on the line of code, which are intuitively

reasonable.

External Validity. (1) Due to the relatively small num-

ber of cases selected and the size of subject systems (4-

120KLOC), the experimental results could not be generalized

to all systems. However, this is mainly because we can only

select systems that have already been researched to obtain

the benchmarks. In addition, the two systems (Lampiro and

MobileMedia) that are initially developed as a product line

system might bring bias on performance, considering their

architectures could be well-organized, like following certain

design patterns, and might make feature mining approach

performs well. (2) For each system, as seeds are decided

using FLAT3, it excludes the bias from selecting seeds by

experimenters. Moreover, the number of seeds and threshold

used in our approach could affect the performance, but we

have discussed the impact of each earlier. (3) To assess the

performance, we use benchmarks from others’ work, which

eliminates the bias introduced by providing benchmarks on

our own.

VIII. RELATED WORK

We organize all related work into three groups: feature

location techniques, asset mining, and feature mining tools.

Feature Location Techniques. Feature mining in the soft-

ware product line context is very different from the normal

feature mining process, which aims to identify the location

in the source base for a functionality concerned. The work

in product line context should also take the variability and

all underlying dependencies and constrains into consideration.

The techniques used in feature location are mainly static

analysis [21], [22], dynamic analysis [23], [24] and hybrid

strategies [7]. Besides relying on the program structure, some

approaches treat the program from a textual aspect [20] or

exploring some dependency relations [7], [21], [25]. Due to

space limitation, here, we only introduce two works [26], [27]

that are highly related to our work using probability ranking. A

complete literature review for feature location could be found

at [28].

Poshyvanyk et al.’s work [26] is essentially a combined

approach of dynamic information from execution scenarios

and textual information to locate features. Antoniol’s work

[27] combines dynamic and static data to identify the relevant

methods. Different from these two approaches, which are

merely suitable for method rather than all types, our approach

also contributes the fine granularity elements, like statement

and local variable. Another difference between StiCProb and

these approaches is the probability in these two approaches are

obtained by tracing the runtime information and our approach

collects probability from a static aspect. That is, these two

approaches are dynamic approaches, and our approach is a

static one, which collects information from the structure of

the program.

Asset Mining. Feature mining is sometimes named asset

mining [29]–[31]. The works in asset mining are mainly

regarding to recover variant relation and model by locating,

documenting and investing features in the feature model.

These works contribute to what to mine, and what should

be considered in the procedure. They could be deemed as a

preliminary work to our contribution as the Step 1 in our

process, and we replace the process by adopting existing

feature models.

Feature Mining Tools. Two tools are closely related to our

work: LEADT [18] and CIDE+ [14]. In LEADT and CIDE+,

the authors pursued the same task on finding the feature code at

a fine granularity. Our work basically contains all strategies in

LEADT and adds our own StiCProb approach. On the contrast,

the work in CIDE+ mainly depends on type-checking-like

mechanism assist with Cerberus’s dependency analysis [7].

Differently, in CIDE+, the feature dependency is not explored,

and it requires a large number of seeds to reach an acceptable

performance.

IX. CONCLUSION

Product line engineering has been broadly adopted to de-

veloping applications with high customization at a low cost.

To reduce the barrier in adopting product lines by migrating

legacy software, we provide a novel approach named SticProb

to extract related code fragments for feature concerned with a

tool named Loong. SticProb uses the conditional probability to

direct the feature mining process. Unlike all other approaches,

SticProb can learn the environment of a programming element

before annotating it to a feature. In this way, SticProb performs

competitively in both precision and recall.

In the future work, we intend to extend our approach

with support by importing dynamic analysis mechanisms.



Especially, it would be attractive to use test cases to detect

code fragments for features along with feature interaction.
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