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Abstract

Context: Software defect prediction strives to detect defect-prone software mod-

ules by mining the historical data. Effective prediction enables reasonable test-

ing resource allocation, which eventually leads to a more reliable software.

Objective: The complex structures and the imbalanced class distribution in

software defect data make it challenging to obtain suitable data features and

learn an effective defect prediction model. In this paper, we propose a method

to address these two challenges.

Method: We propose a defect prediction framework called KPWE that com-

bines two techniques, i.e., Kernel Principal Component Analysis (KPCA) and

Weighted Extreme Learning Machine (WELM). Our framework consists of

two major stages. In the first stage, KPWE aims to extract representative data

features. It leverages the KPCA technique to project the original data into a

latent feature space by nonlinear mapping. In the second stage, KPWE aims

to alleviate the class imbalance. It exploits the WELM technique to learn an

effective defect prediction model with a weighting-based scheme.

Results: We have conducted extensive experiments on 34 projects from the
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PROMISE dataset and 10 projects from the NASA dataset. The experimental

results show that KPWE achieves promising performance compared with 41

baseline methods, including seven basic classifiers with KPCA, five variants of

KPWE, eight representative feature selection methods with WELM, 21 imbal-

anced learning methods.

Conclusion: In this paper, we propose KPWE, a new software defect prediction

framework that considers the feature extraction and class imbalance issues. The

empirical study on 44 software projects indicate that KPWE is superior to the

baseline methods in most cases.

Keywords: feature extraction, nonlinear mapping, kernel principal component

analysis, weighted extreme learning machine

1. Introduction

Software testing is an important part of software development life cycle for

software quality assurance [1, 2]. Defect prediction can assist the quality as-

surance teams to reasonably allocate the limited testing resources by detecting

the potentially defective software modules (such as classes, files, components)5

before releasing the software product. Thus, effective defect prediction can save

testing cost and improve software quality [3, 4, 5].

The majority of existing researches leverages various machine learning tech-

niques to build defect prediction methods. In particular, many classification

techniques have been used as defect prediction models, such as decision tree10

[6], Naive Bayes [7], random forest [8, 9], nearest neighbor [10], support vector

machine [11, 12], neural network [13, 14, 15], logistic regression [16], and en-

semble methods [17, 18]. Since irrelevant and redundant features in the defect

data may degrade the performance of the classification models, different feature

selection methods have been applied to select an optimal feature subset for de-15

fect prediction[19]. These methods can be roughly divided into three categories:

the filter-based feature ranking methods, wrapper-based feature subset evalu-

ation methods, and extraction-based feature transformation methods, such as
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Principal Component Analysis (PCA) [20].

1.1. Motivation20

Selecting optimal features that can reveal the intrinsic structures of the de-

fect data is crucial to build effective defect prediction models. The filter-based

and wrapper-based feature selection methods only select a subset of the original

features without any transformation [21]. However, such raw features may not

properly represent the essential structures of raw defect data [22]. Being a linear25

feature extraction method, PCA has been widely used to transform the raw fea-

tures to a low-dimensional space where the features are the linear combinations

of the raw ones [23, 24, 25, 26]. PCA performs well when the data are linearly

separable and follow a Gaussian distribution, whereas the real defect data may

have complex structures that can not be simplified in a linear subspace [27, 28].30

Therefore, the features extracted by PCA are usually not representative, and

cannot gain anticipated performance for defect prediction [29, 19]. To address

this issue, we exploit KPCA [30], a nonlinear extension of PCA, to project the

original data into a latent high-dimensional feature space in which the mapped

features can properly characterize the complex data structures and increase the35

probability of linear separability of the data. When the original data follow

an arbitrary distribution, the mapped data by KPCA obey an approximate

Gaussian distribution. Figure 1 shows the merit of the feature mapping, where

the data are linearly inseparable within the low-dimensional space but linearly

separable within the high-dimensional space. Existing studies have shown that40

KPCA outperforms PCA [31, 32].

Although many classifiers have been used for defect prediction, Lessmann

et al. [33] suggested that the selection of classifiers for defect prediction needs

to consider additional criteria, such as computational efficiency and simplicity,

because they found that there are no significant performance differences among45

most defect prediction classifiers. Moreover, class imbalance is prevalent in

defect data in which the non-defective modules usually outnumber the defective

ones. It makes most classifiers tend to classify the minority samples (i.e., the
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Figure 1: An example of the merit of feature mapping.

defective modules) as the majority samples (i.e., the non-defective modules).

However, existing defect prediction methods did not address this problem well,50

thus leading to unsatisfactory performance. In this work, we exploit Single-

hidden Layer Feedforward Neural networks (SLFNs) called Weighted Extreme

Learning Machine (WELM) [34] to overcome this challenge. WELM assigns

higher weights to defective modules to emphasize their importance. In addition,

WELM is efficient and convenient since it only needs to adaptively set the55

number of hidden nodes while other parameters are randomly generated instead

being tuned through iterations like traditional neural networks [35].

In this paper, we propose a new defect prediction framework called KPWE

that leverages the two aforementioned techniques: KPCA and WELM. This

framework consists of two major stages. First, KPWE exploits KPCA to map60

original defect data into a latent feature space. The mapped features in the

space can well represent the original ones. Second, with the mapped features,

KPWE applies WELM to build an efficient and effective defect prediction model

that can handle imbalanced defect data.

We conduct extensive experiments on 44 software projects from two datasets65

(PROMISE dataset and NASA dataset) with four indicators, i.e., F-measure, G-

measure, MCC, and AUC. On average, KPWE achieves average F-measure, G-

measure, MCC, and AUC values of 0.500, 0.660, 0.374, and 0.764 on PROMISE

dataset, of 0.410, 0.611, 0.296 and 0.754 on NASA dataset, and of 0.480,
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0.649, 0.356, and 0.761 across 44 projects of the two datasets. We compare70

KPWE against 41 baseline methods. The experimental results show that KPWE

achieves significantly better performance (especially in terms of F-measure,

MCC, and AUC) compared with all baseline methods.

1.2. Organization

The remainder of this paper is organized as follows. Section 2 presents the75

related work. In Section 3, we describe the proposed method in detail. Section

4 elaborates the experimental setup. In Section 5, we report the experimental

results of performance verification. Section 6 discusses the threats to validity.

In Section 7, we draw the conclusion.

2. Related Work80

2.1. Feature Selection for Defect Prediction

Some recent studies have investigated the impact of feature selection meth-

ods on the performance of defect prediction. Song et al. [4] suggested that

feature selection is an indispensable part of a general defect prediction frame-

work. Menzies et al. [7] found that Naive Bayes classifier with Information85

Gain based feature selection can get good performances over 10 projects from

the NASA dataset. Shivaji et al. [36, 37] studied the performance of filter-

based and wrapper-based feature selection methods for bug prediction. Their

experiments showed that feature selection can improve the defect prediction

performance even remaining 10% of the original features. Gao et al. [20] inves-90

tigated four filter-based feature selection methods on a large telecommunication

system and found that the Kolmogorov-Smirnov method achieved the best per-

formance. Gao et al. [38] explored the performance of their hybrid feature

selection framework based on seven filter-based and three feature subset search

methods. They found that the reduced features would not adversely affect the95

prediction performance in most cases. Chen et al. [39] modelled the feature

selection as a multi-objective optimization problem: minimizing the number of

5



selected features and maximizing the defect prediction performance. They con-

ducted experiments on 10 projects from PROMISE dataset and found that their

method outperformed three wrapper-based feature selection methods. However,100

their method was less efficient than two wrapper-based methods. Catal et al.

[40] conducted an empirical study to investigate the impact of the dataset size,

the types of feature sets and the feature selection methods on defect predic-

tion. To study the impact of feature selection methods, they first utilized a

Correlation-based Feature Selection (CFS) method to obtain the relevant fea-105

tures before training the classification models. The experiments on five projects

from NASA dataset showed that the random forest classifier with CFS per-

formed well on large project datasets and the Naive Bayes classifier with CFS

worked well on small projects datasets. Xu et al. [19] conducted an extensive

empirical comparison to investigate the impact of 32 feature selection methods110

on defect prediction performance over three public defect datasets. The exper-

imental results showed that the performances of these methods had significant

differences on all datasets and that PCA performed the worst. Ghotra et al.

[41] extended Xu et al.’s work and conducted a large-scale empirical study to in-

vestigate the defect prediction performance of 30 feature selection methods with115

21 classification models. The experimental results on 18 projects from NASA

and PROMISE datasets suggested that correlation-based filter-subset feature

selection method with best-first search strategy achieved the best performance

among all other feature selection methods on majority projects.

2.2. Various Classifiers for Defect Prediction120

Various classification models have been applied to defect prediction. Malho-

tra [42] evaluated the feasibility of seven classification models for defect predic-

tion by conducting a systematic literature review on the studies that published

from January 1991 to October 2013. They discussed the merits and demerits

of the classification models and found that they were superior to traditional125

statistical models. In addition, they suggested that new methods should be

developed to further improve the defect prediction performance. Malhotra [43]
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used the statistical tests to compare the performance differences among 18 clas-

sification models for defect prediction. They performed the experiments on

seven Android software projects and stated that these models have significant130

differences while support vector machine and voted perceptron model did not

perform well. Lessmann et al. [33] conducted an empirical study to investigate

the effectiveness of 21 classifiers on NASA dataset. The results showed that the

performances of most classifiers have no significant differences. They suggested

that some additional factors, such as the computational overhead and simplic-135

ity, should be considered when selecting a proper classifier for defect prediction.

Ghotra et al. [44] expanded Lessmann’s experiment by applying 31 classifiers

to two versions of NASA dataset and PROMISE dataset. The results showed

that these classifiers achieved similar results on the noisy NASA dataset but

different performance on the clean NASA and the PROMISE datasets. Mal-140

hotra et al. [45] investigated the performances of 18 classifiers on six projects

with object-oriented features and found that Naive Bayes classifier achieved the

best performance. Although some researchers introduced KPCA into defect

prediction [46, 47, 48] recently, they aimed at building asymmetrical prediction

models with the kernel method by considering the relationship between prin-145

cipal components and the class labels. In this work, we leverage KPCA as a

feature selection method to extract representative features for defect prediction.

In addition, Mesquita et al. [49] proposed a method based on ELM with reject

option (i.e., IrejoELM) for defect prediction. The results were good because

they abandoned the modules that have contradictory decisions for two designed150

classifiers. However, in practice, such modules should be considered.

2.3. Class Imbalanced Learning for Defect Prediction

Since class imbalance issue can hinder defect prediction techniques to achieve

satisfactory performance, researchers have proposed different imbalanced learn-

ing methods to mitigate such negative effects. Sampling based methods and155

cost-sensitive based methods are the most studied imbalanced learning meth-

ods for defect prediction.
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For the sampling based imbalanced learning methods, there are two main

sampling strategies to balance the data distribution. One is to decrease the

number of non-defective modules (such as under-sampling technique), the other160

is to increase the number of the defective modules with redundant modules (such

as over-sampling technique) or synthetic modules (such as Synthetic Minority

Over-sampling TEchnique, SMOTE). Kamei et al. [50] investigated the impact

of four sampling methods on the performance of four basic classification models.

They conducted experiments on two industry legacy software systems and found165

that these sampling methods can benefit linear and logistic models but were not

helpful to neural network and classification tree models. Bennin et al. [51] as-

sessed the statistical and practical significance of six sampling methods on the

performance of five basic defect prediction models. Experiments on 10 projects

indicated that these sampling methods had statistical and practical effects in170

terms of some performance indicators, such as Pd, Pf, G-mean, but had no ef-

fect in terms of AUC. Bennin et al. [52] explored the impact of a configurable

parameter (i.e, the percentage of defective modules) in seven sampling meth-

ods on the performance of five classification models. The experimental results

showed that this parameter can largely impact the performance (except AUC)175

of studied prediction models. Due to the contradictory conclusions of previous

empirical studies about which imbalanced learning methods performed the best

in the context of defect prediction models, Tantithamthavorn et al. [53] con-

ducted a large-scale empirical experiment on 101 project versions to investigate

the impact of four popularly-used sampling techniques on the performance and180

interpretation of seven classification models. The experimental results explained

that these sampling methods increased the completeness of Recall indicator but

had no impact on the AUC indicator. In addition, the sampling based imbal-

anced learning methods were not conducive to the understanding towards the

interpretation of the defect prediction models.185

The cost-sensitive based imbalanced learning methods alleviate the differ-

ences between the instance number of two classes by assigning different weights

to the two types of instances. Khoshgottar et al. [54] proposed a cost-boosting
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method by combining multiple classification models. Experiments on two indus-

trial software systems showed that the boosting method was feasible for defect190

prediction. Zheng et al. [55] proposed three cost-sensitive boosting methods

to boost neural networks for defect prediction. Experimental results showed

that threshold-moving-based boosting neural networks can achieve better per-

formance, especially for object-oriented software projects. Liu et al. [56] pro-

posed a novel two-stage cost-sensitive learning method by utilizing cost informa-195

tion in the classification stage and the feature selection stage. Experiments on

seven projects of NASA dataset demonstrated its superiority compared with the

single-stage cost-sensitive classifiers and cost-blind feature selection methods.

Siers et al. [57] proposed two cost-sensitive classification models by combining

decision trees to minimize the classification cost for defect prediction. The ex-200

perimental results on six projects of NASA dataset showed the superiority of

their methods compared with six classification methods. The WELM technique

used in our work belongs to this type of imbalanced learning methods.

3. KPWE: The New Framework

The new framework consists of two stages: feature extraction and model con-205

struction. This section first describes how to project the original data into a la-

tent feature space using the nonlinear feature transformation technique KPCA,

and then presents how to build the WELM model with the extracted features

by considering the class imbalance issue.

3.1. Feature Extraction Based on KPCA210

In this stage, we extract representative features with KPCA to reveal the

potentially complex structures in the defect data. KPCA uses a nonlinear map-

ping function ϕ to project each raw data point within a low-dimensional space

into a new point within a high-dimensional feature space F .

Given a dataset {xi, yi}, i = 1, 2, . . . , n, where xi = [xi1, xi2, . . . , xim]T ∈ <m

denotes the feature set and yi = [yi1, yi2, . . . , yic]
T ∈ <c (c = 2 in this work)
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denotes the label set. Assuming that each data point xi is mapped into a new

point ϕ(xi) and the mapped data points are centralized, i.e.,

1
n

∑n
i=1 ϕ(xi) = 0 (1)

The covariance matrix C of the mapped data is:

C = 1
n

∑n
i=1 ϕ(xi)ϕ(xi)

T (2)

To perform the linear PCA in F , we diagonalize the covariance matrix C,

which can be treated as a solution of the following eigenvalue problem

CV = λV, (3)

where λ and V denote the eigenvalues and eigenvectors of C, respectively.215

Since all solutions V lie in the span of the mapped data points ϕ(x1), ϕ(x2), . . . , ϕ(xn),

we multiply both sides of Eq (3) by ϕ(xl)
T as

ϕ(xl)
TCV = λϕ(xl)

TV,∀l = 1, 2, . . . , n (4)

Meanwhile, there exist coefficients α1, α2, . . . , αn that linearly express the

eigenvectors V of C with ϕ(x1), ϕ(x2), . . . , ϕ(xn), i.e.,

V =
∑n
j=1 αjϕ(xj) (5)

Eq (4) can be rewritten as following formula by substituting Eq (2) and Eq

(5) into it

1
nϕ(xl)

T
∑n
i=1 ϕ(xi)ϕ(xi)

T
∑n
j=1 αjϕ(xj) = λϕ(xl)

T
∑n
j=1 αjϕ(xj) (6)

Let the kernel function κ(xi, xj) be

κ(xi, xj) = ϕ(xi)
Tϕ(xj) (7)

Then Eq (6) is rewritten as

1
n

∑n
l=1,i=1 κ(xl, xi)

∑n
i=1,j=1 αjκ(xi, xj) = λ

∑n
l=1,j=1 αjκ(xl, xj) (8)
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Let the kernel matrix K with size n× n be

Ki,j = κ(xi, xj) (9)

Then Eq (8) is rewritten as

K2α = nλKα, (10)

where α = [α1, α2, . . . , αn]T.

The solution of Eq (10) can be obtained by solving the eigenvalue problem

Kα = nλα (11)

for nonzero eigenvalues λ and corresponding eigenvectors α. As we can see, all

the solutions of Eq (11) satisfy Eq (10).

As mentioned above, we first assume that the mapped data points are cen-

tralized. If they are not centralized, the Gram matrix K̃ be used to replace the

kernel matrix K as

K̃ = K− 1nK−K1n + 1nK1n, (12)

where 1n denotes the n× n matrix with all values equal to 1/n.

Thus, we just need to solve the following formula

K̃α = nλα (13)

To extract the nonlinear principal components of a new test data point

ϕ(xnew), we can compute the projection of the k-th kernel component by

Vk · ϕ(xnew) =
∑n
i=1 α

k
i ϕ(xi)

Tϕ(xnew) =
∑n
i=1 α

k
i κ(xi, xnew) (14)

Figure 2 depicts the process of KPCA for feature extraction. KPCA sim-

plifies the feature mapping by calculating the inner product of two data points

with kernel function instead of calculating the ϕ(xi) explicitly. Various kernel

functions, such as Gaussian Radial Basic Function (RBF) kernel and polynomial

kernel, can induce different nonlinear mapping. The RBF kernel is commonly
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used in image retrieval and pattern recognition domains [58, 59] that is defined

as

κ(xi, xj) = exp

(
−‖xi − xj‖

2

2σ2

)
, (15)

where ‖ · ‖ denotes the l2 norm and 2σ2 = ω denotes the width of the Gaussian220

RBF function.

Mapped new sample

Mapped samples

Inner product

The kth component

....

....

(x1·xnew) (x2·xnew) (xn·xnew)

x1  ϕ(x1) x2  ϕ(x2) xn  ϕ(xn)

xnew  ϕ(xnew)

α1
k α2

k αn
k

 αn
kκ(xi,xnew)

Figure 2: Feature extraction with KPCA.

To eliminate the underlying noise in the data, when performing the PCA

in the latent feature space F , we maintain the most important principal com-

ponents that capture at least 95% of total variances of the data according to

their cumulative contribution rates [60]. Finally, the data are mapped into a225

p-dimensional space.

After completing feature extraction, the original training data are trans-

formed to a new dataset {x′i, yi} ∈ <p ×<c (i = 1, 2, . . . , n).

3.2. ELM

Before formulizing the WELM, we first introduce the basic ELM. With the

mapped dataset {x′i, yi} ∈ <p×<c (i = 1, 2, . . . , n), the output of the generalized

SLFNs with q hidden nodes and activation function h(x′) is formally expressed

as

oi =
∑q
k=1 βkhk(x′i) =

∑q
k=1 βkh(wk, bk, x

′
i), (16)
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βic

βjc

βqc

Figure 3: The architecture of ELM.

where i = 1, 2, . . . , n, wk = [wk1, wk2, . . . , wkp]
T denotes the input weight vector230

connecting the input nodes and the k-th hidden node, bk denotes the bias of the

k-th hidden node, βk = [βk1, βk2, . . . , βkc]
T denotes the output weight vector

connecting the output nodes and the k-th hidden node, and oi denotes the

expected output of the i-th sample. The commonly-used activation functions

in ELM include sigmoid function, Gaussian RBF function, hard limit function,235

and multiquadric function [61, 62]. Figure 3 depicts the basic architecture of

ELM.

Eq (16) can be equivalently rewritten as

Hβ = O, (17)

where H is called the hidden layer output matrix of the SLFNs and is defined
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as

H = H(w1, . . . , wq, b1, . . . , bq, x
′
1, . . . , x

′
n) =


h(x′1)

...

h(x′n)



=


h(w1, b1, x

′
1) · · · h(wq, bq, x

′
1)

...
. . .

...

h(w1, b1, x
′
n) · · · h(wq, bq, x

′
n)


n×q

,

(18)

where the i-th row of H denotes the output vector of the hidden layer with240

respect to input sample x′i, and the k-th column of H denotes the output vector

of the k-th hidden node with respect to the input samples x′1, x
′
2, . . . , x

′
n.

β denotes the weight matrix connecting the hidden layer and the output

layer, which is defined as

β =


βT

1

...

βT
q


q×c

(19)

O denotes the expected label matrix, and each row represents the output

vector of one sample. O is defined as

O =


o1

T

...

on
T

 =


o11 · · · o1c

...
. . .

...

on1 · · · onc


n×c

(20)

Since the target of training SLFNs is to minimize the output error, i.e.,

approximating the input samples with zero error as follows

∑n
i=1 ‖oi − yi‖ = ‖O−Y‖ = 0 (21)

where Y =


y1

T

...

yn
T

 =


y11 · · · y1c

...
. . .

...

yn1 · · · ync


n×c

denotes the target output matrix.245
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Then, we need to solve the following formula

Hβ = Y (22)

Huang et al. [35, 63] proved that, for ELM, the weights wk of the input

connection and the bias bk of the hidden layer node can be randomly and inde-

pendently designated. Once these parameters are assigned, Eq (22) is converted

into a linear system and the output weight matrix β can be analytically deter-

mined by finding the least-square solution of the linear system, i.e.,

min
β
‖Hβ −Y‖ (23)

The optimal solution of Eq (23) is

β̂ = H†Y = (HTH) (24)

where H† denotes the Moore-Penrose generalized inverse of the hidden layer

output matrix H [64, 65]. The obtained β̂ can ensure minimum training error,

get optimal generalization ability and avoid plunging into local optimum since

β̂ is unique [35]. This solution can also be obtained with Karush-Kuhn-Tucker

(KKT) theorem [66].250

Finally, we get the classification function of ELM as

f(x′) = h(x′)β̂ = h(x′)H†Y (25)

3.3. Model Construction Based on WELM

For imbalanced data, to consider the different importance of the majority

class samples (i.e., defective modules) and the minority class samples (i.e., non-

defective modules) when building the ELM classifier, we define a n×n diagonal

matrix W, whose diagonal element Wii denotes the weight of training sample x′i.

More precisely, if x′i belongs to the majority class, the weight Wii is relatively

lower than the sample that belongs to the minority class. According to the

KKT theorem, Eq (24) is rewritten as

β̂ = H†Y = (HTWH)−1HTWT (26)
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Then, Eq (25) becomes

f(x′) = h(x′)β̂ = h(x′)(HTWH)−1HTWT (27)

There are mainly two schemes for assigning the weights to the samples of

the two classes as follows [34]:

W1 = Wii =

1/nP if x′i ∈ minority class

1/nN if x′i ∈ majority class

, (28)

or

W2 = Wii =

0.618/nP if x′i ∈ minority class

1/nN if x′i ∈ majority class

, (29)

where W1 and W2 denote two weighting schemes, nP and nN indicate the

number of samples of the minority and majority class, respectively. The golden

ratio of 0.618:1 between the majority class and the minority class in scheme W2

represents the perfection in nature [67].255

4. Experimental Setup

In this section, we elaborate the experimental setup, including the Research

Questions (RQs), benchmark datasets, the performance indicators, and the

experimental design.

4.1. Research Questions260

We design the following five research questions to evaluate our KPWE method.

RQ1: How efficient are ELM and WELM?

As the computational cost is an important criterion to select the appropriate

classifier for defect prediction in practical application [33, 63], this question is

designed to evaluate the efficiency of ELM and its variant WELM compared265

with some typical classifiers.

RQ2: How effective is KPWE compared with basic classifiers with

KPCA?
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Since our method KPWE combines feature transformation and an advanced

classifier, this question is designed to explore the effectiveness of this new clas-270

sifier compared against the typical classifiers with the same process of feature

extraction. We use the classic classifiers in RQ1 with KPCA as the baseline

methods.

RQ3: Is KPWE superior to its variants?

Since the two techniques KPCA and WELM used in our method are variants275

of the linear feature extraction method PCA and the original ELM respectively,

this question is designed to investigate whether our method is more effective

than other combinations of these four techniques. To answer this question, we

first compare KPWE against the baseline methods that combine WELM with

PCA (short for PCAWELM) and none feature extraction (short for WELM). It280

can be used to investigate the different performance among the methods using

non-linear, linear and none feature extraction for WELM. Then, we compare

KPWE against the baseline methods that combine ELM with KPCA, PCA,

and none feature extraction (short for KPCAELM, PCAELM, and ELM re-

spectively). It can be used to compare the performance of our method against285

its downgraded version methods that do not consider the class imbalance issue.

All these baseline methods are treated as the variants of KPWE.

RQ4: Are the selected features by KPCA more effective for per-

formance improvement than that by other feature selection methods?

To obtain the representative features of the defect data, previous researches290

[41, 19] used various feature selection methods to select an optimal feature subset

to replace the original set. This question is designed to investigate whether

the features extracted by KPCA are more effective in improving the defect

prediction performance than the features selected by other feature selection

methods. To answer this question, we select some classic filter-based feature295

ranking methods and wrapper-based feature subset selection methods with the

same classifier WELM for comparison.

RQ5: Is the prediction performance of KPWE comparable to that

of other imbalanced learning methods?
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Since our method KPWE is customized to address the class imbalance issue300

for software defect data, this question is designed to study whether our method

can achieve better or at least comparable performance than existing imbalanced

learning methods. To answer this question, we employ several sampling-based,

ensemble learning-based, and cost-sensitive-based imbalanced learning methods

for comparison.305

4.2. Benchmark Dataset

We conduct extensive experiments on 34 projects taken from an open-source

PROMISE data repository1, which have been widely used in many defect pre-

diction studies [68, 69, 44]. These projects include open-source projects (such

as ‘ant’ project), proprietary projects (such as ‘prop’ project) and academic310

projects (such as ‘redaktor’ project). Each module in the projects includes 20

object-oriented features and a dependent variable that denotes the number of

defects in the module. These features are collected by Jureczko, Madeyski and

Spinellis with Ckjm tool [70, 71]. We label the module as 1 if it contains one

or more defects. Otherwise, we label it as 0. In this work, we just select a315

subset from PROMISE data repository as our benchmark dataset. The selec-

tion criteria are that: First, to ensure a certain amount of training set and test

set, we filter out the projects that have less than 100 modules. Second, since

our method KPWE is designed to address the imbalanced defect data where

the non-defective modules outnumber the defective ones, we only consider the320

projects whose defective ratios are lower than 50%. As a result, 34 versions of 15

projects are selected and used in this study. To investigate the generalization of

our method to other datasets, we further conduct experiments on ten projects

from NASA dataset which is cleaned by Shepperd et al. [27]. Since there are

two cleaned versions (D′ and D′′) of NASA dataset, in this work, we use the D′′325

version as our benchmark dataset as in previous work [44].

Table 1 and Table 2 summarize the basic information of the two datasets,

1http://openscience.us/repo/defect/ck/
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including the number of features (# F), the number of modules (# M), the

number of defective modules (# D) and the defect ratios (% D). Note that

we do not report the number of features for the projects in PROMISE dataset330

since all of them contain 20 features. In addition, for PROMISE dataset, the

feature descriptions and corresponding abbreviations are presented in Table 3

(CC is the abbreviations of Cyclomatic Complexity). For NASA dataset, Table

4 depicts the common features among the 10 projects and Table 5 tabulates the

other specific features for each project with symbol
√

.335

Table 1: Statistics of the PROMISE Dataset.

Projects # M # D % D Projects # M # D % D

ant-1.3 125 20 16.00% lo4j-1.0 135 34 25.19%

ant-1.4 178 40 22.47% log4j-1.1 109 37 33.94%

ant-1.5 293 32 10.92% lucene-2.0 195 91 46.67%

ant-1.6 351 92 26.21% poi-2.0 314 37 11.78%

ant-1.7 745 166 22.28% prop-6 660 66 10.00%

arc 234 27 11.54% redaktor 176 27 15.34%

camel-1.0 339 13 3.83% synapse-1.0 157 16 10.19%

camel-1.2 608 216 35.53% synapse-1.1 222 60 27.03%

camel-1.4 872 145 16.63% synapse-1.2 256 86 33.59%

camel-1.6 965 188 19.48% tomcat 858 77 8.97%

ivy-1.4 241 16 6.64% velocity-1.6 229 78 34.06%

ivy-2.0 352 40 11.36% xalan-2.4 723 110 15.21%

jedit-3.2 272 90 33.09% xalan-2.5 803 387 48.19%

jedit-4.0 306 75 24.51% xalan-2.6 885 411 46.44%

jedit-4.1 312 79 25.32% xerces-init 162 77 47.53%

jedit-4.2 367 48 13.08% xerces-1.2 440 71 16.14%

jedit-4.3 492 11 2.24% xerces-1.3 453 69 15.23%

Table 2: Statistics of the NASA Dataset.

Projects # F # M # D % D Projects # F # M # D % D

CM1 37 327 42 12.84% MW1 37 251 25 9.96%

KC1 21 1162 294 25.30% PC1 37 696 55 7.90%

KC3 39 194 36 18.56% PC3 37 1073 132 12.30%

MC1 38 1847 36 1.95% PC4 37 1276 176 13.79%

MC2 39 125 44 35.20% PC5 38 1679 459 27.34%
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Table 3: The Feature Description and Abbreviation for PROMISE Dataset

1. Weighted Methods per Class (WMC) 11. Measure of Functional Abstraction (MFA)

2. Depth of Inheritance Tree (DIT) 12. Cohesion Among Methods of Class (CAM)

3. Number of Children (NOC) 13. Inheritance Coupling (IC)

4. Coupling between Object Classes (CBO) 14. Coupling Between Methods (CBM)

5. Response for a Class (RFC) 15. Average Method Complexity (AMC)

6. Lack of Cohesion in Methods (LOCM) 16. Afferent Couplings (Ca)

7. Lack of Cohesion in Methods (LOCM3) 17. Efferent Couplings (Ce)

8. Number of Public Methods (NPM) 18. Greatest Value of CC (Max CC)

9. Data Access Metric (DAM) 19. Arithmetic mean value of CC (Avg CC)

10. Measure of Aggregation (MOA) 20. Lines of Code (LOC)

Table 4: The Description of the Common Feature for NASA Dataset

1. Line count of code 11. Halstead Volume

2. Count of blank lines 12. Halstead Level

3. Count of code and comments 13. Halstead Difficulty

4. Count of comments 14. Halstead Content

5. Line count of executable code 15. Halstead Effort

6. Number of operators 16. Halstead Error Estimate

7. Number of operands 17. Halstead Programming Time

8. Number of unique operators 18. Cyclomatic Complexity

9. Number of unique operands 19. Design Complexity

10. Halstead Length 20. Essential Complexity

Table 5: The Specific Features for Each Project of NASA Dataset

Features CM1 KC1 KC3 MC1 MC2 MW1 PC1 PC3 PC4 PC5

21. Number of lines
√ √ √ √ √ √ √ √ √

22. Cyclomatic Density
√ √ √ √ √ √ √ √ √

23. Branch Count
√ √ √ √ √ √ √ √ √ √

24. Essential Density
√ √ √ √ √ √ √ √ √

25. Call Pairs
√ √ √ √ √ √ √ √ √

26. Condition Count
√ √ √ √ √ √ √ √ √

27. Decision Count
√ √ √ √ √ √ √ √ √

28. Decision Density
√ √ √ √ √ √ √

29. Design Density
√ √ √ √ √ √ √ √ √

30. Edge Count
√ √ √ √ √ √ √ √ √

31. Global Data Complexity
√ √ √ √

32. Global Data Density
√ √ √ √

33. Maintenance Severity
√ √ √ √ √ √ √ √ √

34. Modified Condition Count
√ √ √ √ √ √ √ √ √

35. Multiple Condition Count
√ √ √ √ √ √ √ √ √

36. Node Count
√ √ √ √ √ √ √ √ √

37. Normalized CC
√ √ √ √ √ √ √ √ √

38. Parameter Count
√ √ √ √ √ √ √ √ √

39. Percent Comments
√ √ √ √ √ √ √ √ √
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4.3. Performance Indicators

We use F-measure, G-measure, Matthews Correlation Coefficient (MCC)

and Area Under the ROC Curve (AUC) to measure the performance of KPWE,

because they are widely used in defect prediction [44, 69, 72, 73]. The first three

indicators can be deduced by some simpler binary classification metrics as listed340

in Table 6.

Possibility of detection (pd) or recall is defined as the ratio of the number of

defective modules that are correctly predicted to the total number of defective

modules.

Possibility of false alarm (pf ) is defined as the ratio of the number of defective345

modules that are incorrectly predicted to the total number of non-defective

modules.

Precision is defined as the ratio of the number of defective modules that are

correctly predicted to the total number of defective modules that are correctly

and incorrectly predicted.350

Table 6: Basic Indicators for Defect Prediction.

Predicted as defective Predicted as defective-free

Actual defective TP FN

Actual defective-free FP TN

pd (recall) TP
TP+FN

pf FP
FP+TN

precision TP
TP+FP

F-measure, a trade-off between recall and precision, is defined as

F-measure =
2 ∗ recall ∗ precision

recall + precision
(30)

G-measure, a trade-off between pd and pf, is defined as

G-measure =
2 ∗ pd ∗ (1− pf)

pd + (1− pf)
(31)

MCC, a comprehensive indicator by considering TP, TN, FP, and FN, is
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defined as

MCC =
TP ∗ TN− FP ∗ FN√

(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)
(32)

AUC calculates the area under a ROC curve which depicts the relative trade-

off between pd (the y-axis) and pf (the x-axis) of a binary classification. Dif-

ferent from the above three indicators which are based on the premise that the

threshold of determining a sample as positive class is 0.5 by default, the value of

AUC is independent of the decision threshold. More specifically, given a thresh-355

old, we can get a point pair (pd,pf ) and draw the corresponding position in the

two-dimension plane. For all possible thresholds, we can get a set of such point

pairs. The ROC curve is made up by connecting all these points. The area

under this curve is used to evaluate the classification performance.

The greater values of the four indicators indicate better prediction perfor-360

mance.

4.4. Experimental Design

We perform substantial experiments to evaluate the effectiveness of KPWE.

In the feature extraction phase, we choose the Gaussian RBF as the kernel

function for KPCA since it usually exhibits better performances in many appli-365

cations [58, 59, 74]. In terms of the parameter ω, i.e., the width of the Gaussian

kernel (as defined in Section 3.1), we empirically set a relatively wide range as

ω = 102, 202, . . . , 1002. In the model construction phase, we also choose the

Gaussian RBF as the activation function for WELM because it is the preferred

choice in many applications [59, 75]. Since the number of hidden nodes q is370

far less than the number of training sample n [35], we set the number of hid-

den nodes from 5 to n with an increment of 5. So, for each project, there are

2n(10 × n
5 ) combinations of ω and q in total. For the weighting scheme of W,

we adopt the second scheme W2 as described in Section 3.3. For each project,

we use the 50:50 split with stratified sampling to constitute the training and375

test set. More specifically, we utilize stratified sampling to randomly select

50% instances as the training set and the remaining 50% instances as the test
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set. The stratified sampling strategy guarantees the same defect ratios of the

training set and test set which conforms to the actual application scenario. In

addition, such sampling setting helps reduce sampling biases [76]. The 50:50380

split and stratified sampling are commonly used in previous defect prediction

studies [77, 22, 78, 79]. To mitigate the impact of the random division treatment

on the experimental results and produce a general conclusion, we repeat this

process 30 times on each project by reshuffling the module order. Therefore, for

each parameter combination, we run KPWE 30 times and record the average385

indicator values. Finally, the optimal combination of parameters ω and q is

determined by the best average F-measure value. In this work, we report the

average values of the four indicators on 30-rounds experiments.

4.5. Statistical Test Method

To statistically analyze the performance between our method KPWE and390

other baseline methods, we perform the non-parametric Frideman test with the

Nemenyi’s post-hoc test [80] at significant level 0.05 over all projects. The

Friedman test evaluates whether there exist statistically significant differences

among the average ranks of different methods. Since Friedman test is based

on performance ranks of the methods, rather than actual performance values,395

therefore it makes no assumptions on the distribution of performance values and

is less susceptible to outliers [33, 81]. The test statistic of the Friedman test can

be calculated as follows:

τχ2 =
12N

L(L+ 1)
(

L∑
j=1

AR2
j −

L(L+ 1)2

4
), (33)

where N denotes the total number of the projects, L denotes the number of

methods needed to be compared, ARj = 1
N

∑N
i=1R

j
i denotes the average rank400

of method j on all projects and Rji denotes the rank of jth method on the ith

project. τχ2 obeys the χ2 distribution with L− 1 degree of freedom [82]. Since

the original Friedman test statistic is too conservative, its variant τF is usually
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used to conduct the statistic test. τF is calculated as the following formula:

τF =
(N − 1)τχ2

N(L− 1)− τχ2

. (34)

τF obeys the F-distribution with L−1 and (L−1)(N−1) degrees of freedom.405

Once τF value is calculated, we can compare τF against critical values2 for the F

distribution and then determine whether to accept or reject the null hypothesis

(i.e., all methods perform equally on the projects).

If the null hypothesis is rejected, it means that the performance differences

among different methods are nonrandom, then a so-called Nemenyi’s post-hoc410

test is performed to check which specific method differs significantly [33]. For

each pair of methods, this test uses the average rank of each method and checks

whether the rank difference exceeds a Critical Difference (CD) which is calcu-

lated with the following formula:

CD = qα,L

√
L(L+ 1)

6N
, (35)

where qα,L is a critical value that related to the number of methods L and the415

significance level α. The critical values are available online3. The Frideman test

with the Nemenyi’s post-hoc test is widely used in previous studies [33, 81, 83,

84, 85, 86, 87, 88].

However, the main drawback of post-hoc Nemenyi test is that it may gen-

erate overlapping groups for the methods that are compared, not completely420

distinct groups, which means that a method may belong to multiple signifi-

cantly different groups [44, 88]. In this work, we utilize the strategy in [88] to

address this issue. More specifically, under the assumption that the distance

(i.e., the difference between two average ranks) between the best average rank

and the worst rank is 2 times larger than CD value, we divide the methods425

into three non-overlapping groups: (1) The method whose distance to the best

average rank is less than CD belongs to the top rank group; (2) The method

2http://www.socr.ucla.edu/applets.dir/f table.html
3http://www.cin.ufpe.br/˜fatc/AM/Nemenyi critval.pdf

24



whose distance to the worst average rank is less than CD belongs to the bottom

rank group; (3) The other methods belong to the middle rank group. And if the

distance between the best average rank and the worst rank is larger than 1 time430

but less than 2 times CD value, we divide the methods into 2 non-overlapping

groups: The method belongs to the top rank group (or bottom rank group) if

its average rank is closer to the best average rank (or the worst average rank).

In addition, if the distance between the best average rank and the worst rank is

less than CD value, all methods belong to the same group. Using this strategy,435

the generating groups are non-overlapping significantly different.

5. Performance Evaluation

5.1. Answer to RQ1: the efficiency of ELM, WELM and some classic classifiers.

Since many previous defect prediction studies applied classic classifiers as

prediction models [33, 44], in this work, we choose seven representative classi-440

fiers, including Naive Bayes (NB), Nearest Neighbor (NN), Random Forest

(RF), Logistic Regression (LR), Classification and Regression Tree (CART),

Back Propagation neural networks (BP) and Support Vector Machine (SVM),

and compare their efficiency with ELM and WELM.

The parameter settings of the classifiers are detailed as follows. For NB, we445

use the kernel estimator that achieves better F-measure values on most projects

through our extensive experiments. For RF, we set the number of generated

trees to 10, the number of variables for random feature selection to 2, and do not

limit the maximum depth of the trees, as suggested in [11]. BP is implemented

using the neural networks toolbox in MATLAB with a three-layered and fully-450

connected network architecture. The learning rate is initialized to 0.1. Since

how to select an optimal number of hidden nodes is still an open question [89],

we conduct extensive experiments on the benchmark dataset and find that BP

can achieve the best F-measure with less than 80 hidden nodes on the vast

majority of the projects. Thus we set the number of hidden nodes from 5 to 80455

with an increment of 5. The algorithm terminates when the number of iterations
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is above 2000 or the tolerant error is below 0.004. Other network parameters is

set with the default values. The optimal number of hidden nodes is determined

based on the best F-measure.

For SVM, we also choose the Gaussian RBF as the kernel function, and460

set the kernel parameter ωSVM = 2−10, 2−9, . . . , 24 while cost parameter C =

2−2, 2−1, . . . , 212 as suggested in [90]. Similarly, the optimal parameter combi-

nation is obtained according to the best performance through the grid search.

For other classifiers, we use the default parameter values. Table 7 tabulates the

parameter setting of the seven basic classifiers. The experiments are conducted465

on a workstation with a 3.60 GHz Intel i7-4790 CPU and 8.00 GB RAM.

Table 7: The Parameter Settings of the Used Machine Learning Classifiers

Classifier Parameter settings

NB Estimator: kernel estimator

RF Number of generated tree: 10, Number of variables for random feature selection: 2

BP Layer: 3, Learning rate: 0.1, Maximal number of iterations: 2000, Tolerant error: 0.004

SVM Kernel function: Gaussian RBF, Kernel parameter: 2−10, 2−9, , 24, Cost parameter: 2−2, 2−1, , 212

NN Number of neighbors used: 1

LR The distribution used: normal

CART The minimal number of observations per tree leaf: 1

Table 8: Training Time of Classifiers on PROMISE Dataset (in Seconds)

Projects NB RF LR CART BP SVM ELM WELM

ant 0.085 0.181 0.019 0.030 2.933 8.089 0.008 0.003

arc 0.084 0.174 0.040 0.016 8.444 3.651 0.003 0.006

camel 0.084 0.171 0.050 0.050 9.050 21.985 0.061 0.004

ivy 0.086 0.168 0.014 0.020 6.222 5.233 0.006 0.002

jedit 0.100 0.168 0.032 0.034 4.414 7.869 0.008 0.007

log4j 0.066 0.150 0.007 0.014 0.465 2.181 0.000 0.000

lucene 0.088 0.000 0.073 0.004 0.666 7.887 0.006 0.003

poi 0.085 0.000 0.043 0.005 0.663 10.196 0.004 0.003

prop-6 0.086 0.170 0.144 0.056 11.793 14.179 0.042 0.003

redaktor 0.082 0.171 0.044 0.023 0.645 2.793 0.000 0.000

synapse 0.081 0.170 0.021 0.020 5.761 3.912 0.003 0.000

tomcat 0.082 0.206 0.023 0.058 6.267 21.958 0.055 0.005

velocity 0.087 0.170 0.012 0.017 14.742 4.154 0.003 0.000

xalan 0.080 0.223 0.024 0.077 6.836 26.410 0.028 0.011

xerces 0.084 0.192 0.026 0.039 3.898 8.112 0.006 0.008
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Table 9: Training Time of Classifiers on NASA Dataset (in Seconds)

Projects NB RF LR CART BP SVM ELM WELM

CM1 0.004 0.175 1.902 0.094 8.551 6.960 0.030 0.061

KC1 0.014 0.294 0.027 0.112 5.316 88.619 0.176 0.005

KC3 0.004 0.167 1.755 0.07 18.519 3.996 0.003 0.040

MC1 0.662 0.263 2.939 0.204 131.473 95.002 0.309 0.108

MC2 0.669 0.15 1.065 0.049 1.791 2.696 0.003 0.036

MW1 0.629 0.152 1.848 0.053 86.102 4.585 0.006 0.031

PC1 0.643 0.198 2.151 0.115 3.285 20.158 0.041 0.054

PC3 0.681 0.257 0.424 0.218 127.702 50.87 0.147 0.061

PC4 0.630 0.261 2.658 0.216 53.239 65.151 0.09 0.073

PC5 0.666 0.351 0.246 0.438 113.32 179.318 0.283 0.087

Since NN is a lazy classifier that does not need to build a model with the

training set in advance, it has no training time [91]. Table 8 and Table 9 present

the training times of ELM, WELM and the baseline classifiers on PROMISE

dataset and NASA dataset, respectively. Note that the value 0 means the train-470

ing time of the classifier is less than 0.0005 seconds. For the project with multi-

ple versions, we only report the average training time across the versions. From

Table 8, we observe that, on PROMISE dataset, the training time of WELM,

less than 0.01 seconds on 14 projects, is lower than the baseline classifiers on

most projects. More specifically, the training time of NB, RF, LR, and CART,475

less than 0.3 seconds, is a little bit longer than that of ELM and WELM except

for the time of RF on project lucene and poi, while the training time of ELM

and WELM are much shorter than that of BP and SVM. In particular, WELM

runs nearly 200 (for poi) to 30000 (for velocity) times faster than BP while

600 (for arc) to 8500 (for velocity) times faster than SVM. The training time480

between ELM and WELM has a slight difference. From Table 9, we find that,

on NASA dataset, WELM takes less than 0.1 seconds to finish training a model

on 9 projects. ELM and WELM run faster than the six classifiers except for NB

on CM1 project. Particularly, WELM runs 50 (for MC2) to 2700 (for MW1)

times faster than BP while 100 (for KC3) to 17000 (for KC1) times faster than485

SVM.

Discussion: The short training time of ELM and WELM is due to the
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following reasons. First, the weights of the input layer and the bias of the hidden

layer in ELM are randomly assigned without iterative learning. Second, the

weights of the output layer are solved by an inverse operation without iteration.490

They empower ELM to train the model quickly. Since WELM only adds one step

for assigning different weights to the defective and non-defective modules when

building the model, it introduces little additional computation cost. Therefore,

the training time of ELM and that of WELM are very similar. The superiority

of the training speed of ELM and WELM will be more significant when they495

are applied to larger datasets.

Summary: Compared with the basic classifiers, ELM and WELM are more ef-

ficient to train the prediction model, especially towards BP and SVM, whereas

the differences of the efficiency between ELM, WELM and other classifiers are

small.

5.2. Answer to RQ2: the prediction performance of KPWE and the basic clas-

sifiers with KPCA.

Table 10 presents the average indicator values of KPWE and the seven base-500

line methods on PROMISE dataset, NASA dataset, and across all 44 projects

of the two datasets. Figure 4 depicts the box-plots of four indicators for the

eight methods across all 44 projects. The detailed results, including the opti-

mal kernel parameter, the number of hidden nodes, the performance value for

each indicator on each project and the corresponding standard deviation for all505

research questions are available on our online supplementary materials4. From

Table 10 and Figure 4, we have the following observations.

First, from Table 10, the results show that our method KPWE achieves the

best average performance in terms of all indicators on two datasets and across all

44 projects. More specifically, across all 44 projects, the average F-measure value510

(0.480) by KPWE yields improvements between 17.1% (for KPNB) and 41.2%

(for KPRF) with an average improvement of 25.1%, the average G-measure

4https://sites.google.com/site/istkpwe
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Table 10: Average Indicator Values of KPWE and Seven Basic Classifiers with KPCA on

Two Datasets and Across All Projects

Dataset Indicator KPNB KPNN KPRF KPLR KPCART KPBP KPSVM KPWE

PROMISE

F-measure 0.426 0.423 0.361 0.410 0.396 0.419 0.391 0.500

G-measure 0.525 0.523 0.360 0.453 0.484 0.478 0.376 0.660

MCC 0.284 0.257 0.235 0.292 0.222 0.260 0.280 0.374

AUC 0.699 0.624 0.696 0.716 0.630 0.672 0.648 0.764

NASA

F-measure 0.354 0.336 0.267 0.325 0.315 0.352 0.310 0.410

G-measure 0.476 0.477 0.264 0.387 0.425 0.429 0.287 0.611

MCC 0.248 0.216 0.201 0.234 0.176 0.242 0.230 0.296

AUC 0.708 0.596 0.693 0.698 0.606 0.684 0.655 0.754

ALL

F-measure 0.410 0.403 0.340 0.391 0.377 0.403 0.372 0.480

G-measure 0.513 0.512 0.338 0.438 0.471 0.467 0.355 0.649

MCC 0.276 0.248 0.228 0.279 0.212 0.256 0.269 0.356

AUC 0.701 0.618 0.695 0.712 0.625 0.675 0.650 0.761

value (0.649) by KPWE gains improvements between 26.5% (for KPNB) and

92.0% (for KPRF) with an average improvement of 50.4%, the average MCC

value (0.356) by KPWE achieves improvements between 27.6% (for KPLR) and515

67.9% (for KPCART) with an average improvement of 42.2%, and the average

AUC value (0.761) gets improvements between 6.9% (for KPLR) and 23.1%

(for KPNN) with an average improvement of 14.2% compared against the seven

classic classifiers with KPCA.

Second, Figure 4 demonstrates that the median values of all four indicators520

by KPWE are superior to that by the seven baseline methods across all 44

projects. In particular, the median AUC by KPWE is even higher than or

similar to the maximum AUC by KPNN, KPCART, and KPBP.

Third, Figure 5 visualizes the results of the Friedman test with Nemenyi’s

post-hoc test for KPWE and the seven baseline methods in terms of the four525

indicators. Groups of the methods that are significantly different are with dif-

ferent colors. The results of the Friedman test show that the p values are all

less than 0.05, which means that there exist significant differences among the

eight methods in terms of all four indicators. The results of the post-hoc test

show that KPWE always belongs to the top rank group in terms of all indica-530

tors. In addition, KPLR belongs to the top rank group in terms of AUC. These
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Figure 4: Box-plots of four indicators for KPWE and seven basic classifiers with KPCA

across all 44 projects.
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Figure 5: Comparison of KPWE against seven basic classifiers with KPCA using Friedman

test and Nemenyi’s post-hoc test in terms of four indicators.
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observations indicate that KPWE performs significantly better than the seven

baseline methods expect for the KPLR method in terms of AUC.

Discussion: Among all the methods that build prediction models with the

features extracted by KPCA, KPWE outperforms the baseline methods because535

it uses an advanced classifier that considers the class imbalance in the defect

data while traditional classifiers could not well copy with the imbalanced data.

Summary: Our method KPWE performs better than KPCA with the seven

basic classifiers. On average, compared with the seven baseline methods,

KPWE achieves 24.2%, 47.3%, 44.3%, 14.4% performance improvement in

terms of the four indicators respectively over PROMISE dataset, 28.1%, 63.6%,

35.6%, 14.2% performance improvement in terms of the four indicators re-

spectively over NASA dataset, and 25.1%, 50.4%, 42.2%, 14.2% performance

improvement in terms of the four indicators respectively across all 44 projects.

5.3. Answer to RQ3: the prediction performance of KPWE and its variants.

Table 11 presents the average indicator values of KPWE and its five variants540

on PROMISE dataset, NASA dataset, and across all 44 projects of the two

datasets. Figure 6 depicts the box-plots of four indicators for the six methods

across all 44 projects. From Table 11 and Figure 6, we have the following

findings.

First, from Table 11, the results show that our method KPWE achieves545

the best average performance in terms of all indicators on two datasets and

across all 44 projects. More specifically, across all 44 projects, the average

F-measure value (0.480) by KPWE yields improvements between 8.1% (for KP-

CAELM) and 31.9% (for WELM) with an average improvement of 25.4%, the

average G-measure value (0.649) by KPWE gains improvements between 14.7%550

(for PCAWELM) and 38.7% (for ELM) with an average improvement of 25.0%,

the average MCC value (0.356) by KPWE achieves improvements between 9.9%

(for KPCAELM) and 107.0% (for ELM) with an average improvement of 78.2%,

and the average AUC value (0.761) gets improvements between 9.2% (for KP-
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Table 11: Average Indicator Values of KPWE and Its Five Variants with WELM on Two

Datasets and Across All Projects

Dataset Indicator ELM PCAELM KPCAELM WELM PCAWELM KPWE

PROMISE

F-measure 0.382 0.388 0.467 0.374 0.385 0.500

G-measure 0.470 0.486 0.567 0.556 0.571 0.660

MCC 0.174 0.183 0.342 0.182 0.200 0.374

AUC 0.617 0.624 0.702 0.629 0.639 0.745

NASA

F-measure 0.322 0.324 0.365 0.330 0.333 0.410

G-measure 0.458 0.451 0.475 0.550 0.550 0.611

MCC 0.164 0.164 0.263 0.184 0.188 0.296

AUC 0.612 0.611 0.679 0.626 0.629 0.754

ALL

F-measure 0.369 0.374 0.444 0.364 0.373 0.480

G-measure 0.468 0.478 0.546 0.555 0.566 0.649

MCC 0.172 0.179 0.324 0.183 0.197 0.356

AUC 0.616 0.621 0.697 0.628 0.637 0.747

CAELM) and 23.5% (for ELM) with an average improvement of 19.2% com-555

pared with the five variants.

Second, Figure 6 shows that KPWE outperforms the five variants in terms

of the median values of all indicators across all 44 projects. In particular, the

median G-measure by KPWE is higher than or similar to the maximum G-

measure (do not consider the noise points) by the baseline methods except for560

PCAWELM, the median MCC by KPWE is higher than the maximum MCC

by ELM, WELM and PCAWELM, and the median AUC by KPWE is higher

than the maximum AUC by the baseline methods except for PCAWELM.

Third, Figure 7 visualizes the results of the Friedman test with Nemenyi’s

post-hoc test for KPWE and its five variants in terms of the four indicators.565

The p values of the Friedman test are all less than 0.05, which means that there

exist significant differences among the six methods in terms of all four indicators.

The results of the post-hoc test show that KPWE also always belongs to the

top rank 1 group in terms of all indicators. In addition, KPCAELM belong

to the top rank 1 group in terms of F-measure and MCC. These observations570

indicate that in terms of G-measure and AUC, KPWE significantly performs

better than the five variants, whereas in terms of F-measure and MCC, KPWE
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Figure 6: Box-plots of four indicators for KPWE and its variants on NASA dataset.

1 2 3 4 5 6

KPWE
KPCAELM

PCAWELM PCAELM
WELM
ELM

CD = 1.137 Friedman p-value: 1.870e-26

(a) F-measure

1 2 3 4 5 6

KPWE
PCAWELM
KPCAELM WELM

PCAELM
ELM

CD = 1.137 Friedman p-value: 1.634e-24

(b) G-measure

1 2 3 4 5 6

KPWE
KPCAELM

PCAWELM WELM
PCAELM
ELM

CD = 1.137 Friedman p-value: 1.079e-31

(c) MCC

1 2 3 4 5 6

KPWE
KPCAELM

PCAWELM WELM
PCAELM
ELM

CD = 1.137 Friedman p-value: 1.090e-24

(d) AUC

Figure 7: Comparison of KPWE against its five variants with Friedman test and Nemenyi’s

post-hoc test in terms of four indicators.
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does not perform significantly better than KPCAELM.

Discussion: On the one hand, KPWE and KPCAELM are superior to

PCAWELM and PCAELM in terms of all four indicators respectively, on the575

other hand, KPWE and KPCAELM perform better than WELM and ELM re-

spectively on both datasets, all these mean that the features extracted by the

nonlinear method KPCA are beneficial to ELM and WELM for the improve-

ment of defect prediction performance compared against the raw features or the

features extracted by linear method PCA. Moreover, KPWE, PCAWELM and580

WELM are superior to KPCAELM, PCAELM and ELM respectively which de-

notes that WELM is more appropriate to the class imbalanced defect data than

ELM.

Summary: KPWE precedes its five variants. On average, compared with

the five downgraded variants, KPWE achieves 26.1%, 25.4%, 84.2%, 19.2%

performance improvement in terms of the four indicators respectively over

PROMISE dataset, 22.7%, 23.9%, 58.4%, 19.6% performance improvement

in terms of the four indicators respectively over NASA dataset, and 25.4%,

25.0%, 78.2%, 19.2% performance improvement in terms of the four indicators

respectively across all 44 projects.

5.4. Answer to RQ4: the prediction performance of KPWE and other feature585

selection methods with WELM.

Here, we choose eight representative feature selection methods, include four

filter-based feature ranking methods and four wrapper-based feature subset se-

lection methods, for comparison. The filter-based methods are Chi-Square (CS),

Fish Score (FS), Information Gain (IG) and ReliefF (ReF). The first two meth-590

ods are both based on statistics, the last two are based on entropy and instance,

respectively. These methods have been proven to be effective for defect predic-

tion [19, 92]. For wrapper-based methods, we choose four commonly-used classi-

fiers (i.e., NB, NN, LR, and RF) and F-measure to evaluate the performance of

the selected feature subset. The four wrapper methods are abbreviated as NB-595

Wrap, NNWrap, LRWrap, and RFWrap. Following the previous work [19, 38],

34



we set the number of selected features to dlog2me, where m is the number of

original features.

Table 12 presents the average indicator values of KPWE and eight feature se-

lection methods with WELM on PROMISE dataset, NASA dataset, and across600

all 44 projects of the two datasets. Figure 8 depicts the box-plots of four indi-

cators for the nine methods across all 44 projects. Some findings are observed

from Table 12 and Figure 8 as follows.

Table 12: Average Indicator Values of KPWE and Eight Feature Selection Methods with

WELM on Two Datasets and Across All Projects

Dataset Indicator CS FS IG ReF NBWrap NNWrap LRWrap RFWrap KPWE

PROMISE

F-measure 0.347 0.415 0.349 0.415 0.427 0.435 0.425 0.431 0.500

G-measure 0.482 0.574 0.482 0.574 0.588 0.605 0.582 0.597 0.660

MCC 0.139 0.257 0.142 0.255 0.271 0.283 0.271 0.277 0.374

AUC 0.590 0.680 0.588 0.674 0.688 0.692 0.689 0.690 0.764

NASA

F-measure 0.297 0.360 0.301 0.366 0.353 0.378 0.365 0.369 0.410

G-measure 0.510 0.568 0.515 0.578 0.573 0.603 0.581 0.591 0.611

MCC 0.152 0.247 0.157 0.243 0.228 0.265 0.242 0.252 0.296

AUC 0.618 0.685 0.606 0.685 0.681 0.688 0.679 0.679 0.754

ALL

F-measure 0.336 0.403 0.338 0.404 0.410 0.422 0.411 0.417 0.480

G-measure 0.488 0.572 0.490 0.575 0.585 0.604 0.582 0.595 0.649

MCC 0.142 0.255 0.145 0.252 0.261 0.279 0.265 0.271 0.356

AUC 0.596 0.681 0.592 0.676 0.686 0.691 0.687 0.688 0.761

First, from Table 12, the results show that our method KPWE achieves the

best average performance in terms of all indicators on two datasets and across all605

44 projects. More specifically, across all 44 projects, the average F-measure value

(0.480) by KPWE yields improvements between 13.7% (for NNWrap) and 42.9%

(for CS) with an average improvement of 23.2%, the average G-measure value

(0.649) by KPWE gains improvements between 7.5% (for NNWrap) and 33.0%

(for CS) with an average improvement of 16.4%, the average MCC value (0.356)610

by KPWE achieves improvements between 27.6% (for NNWrap) and 150.7% (for

CS) with an average improvement of 63.4%, and the average AUC value (0.761)

gets improvements between 10.1% (for NNWrap) and 27.7% (for CS) with an

average improvement of 15.4% compared with eight feature selection methods

with WELM.615

Second, Figure 8 manifests that superiority of KPWE compared with the
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Figure 8: Box-plots of four indicators for KPWE and eight feature selection methods with

WELM across all 44 projects.
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Figure 9: Comparison of KPWE against the eight feature selection based baseline methods

with Friedman test and Nemenyi’s post-hoc test in terms of four indicators.
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eight baseline methods in terms of the median values of all four indicators across

all 44 projects. In particular, the median AUC by KPWE is higher than the

maximum AUC by CS and IG. In addition, we can also observe that the perfor-

mance of the four wrapper-based feature subset selection methods are generally620

better than the filter-based feature subset selection methods, which is consistent

with the observation in previous study [19].

Third, Figure 9 visualizes the results of the Friedman test with Nemenyi’s

post-hoc test for KPWE and the eight feature selection based baseline methods

in terms of the four indicators. There exist significant differences among the nine625

methods in terms of all four indicators since the p values of the Friedman test are

all less than 0.05. The results of the post-hoc test illustrate that KPWE always

belongs to the top rank group in terms of all indicators. In addition, NNWrap

belongs to the top rank group in terms of G-measure. These observations show

that KPWE performs significantly better than the eight baseline methods expect630

for the NNWrap method in terms of G-measure.

Discussion: The reason why the features extracted by KPCA are more

effective is that, the eight feature selection methods only select a subset of

original features that are not able to excavate the important information hidden

behind the raw data, whereas KPCA can eliminate the noise in the data and635

extract the intrinsic structures of the data that are more helpful to distinguish

the class labels of the modules.

Summary: KPWE outperforms the eight feature selection methods with

WELM. On average, compared with the eight baseline methods, KPWE

achieves 24.3%, 18.6%, 71.0%, 16.0% performance improvement in terms of

the four indicators respectively over PROMISE dataset, 18.5%, 8.5%, 38.3%,

13.7% performance improvement in terms of the four indicators respectively

over NASA dataset, and 23.2%, 16.4%, 63.4%, 15.4% performance improve-

ment in terms of the four indicators respectively across all 44 projects.
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5.5. Answer to RQ5: the prediction performance of KPWE and other imbal-

anced learning methods.640

Here, we employ 12 classic imbalanced learning methods based on data

sampling strategies. These methods first use Random Under-sampling (RU),

Random Over-sampling (RO) or SMOTE (SM) techniques to rebalance the

modules of the two classes in the training set, then, four popular classifiers as

the same in RQ4 (i.e., NB, NN, LR, and RF) are applied to the rebalanced645

training set. The method name is the combination of the abbreviation of the

sampling strategy and the used classifier. Also, we employ two widely-used

ensemble learning methods (i.e., Bagging (Bag) and Adaboost (Ada)) for com-

parison. Moreover, we use other seven imbalanced learning methods, Coding-

based Ensemble Learning (CEL) [93], Systematically developed Forest with650

cost-sensitive Voting (SysFV) [94], Cost-Sensitive decision Forest with cost-

sensitive Voting (CSFV) [95], Balanced CSFV (BCSFV) [57], Asymmetric

Partial Least squares classifier (APL) [96], EasyEnsemble (Easy) [97], and

BalanceCascade (Bal) [97] as the baseline methods. Note that the last three

methods have not yet been applied to defect prediction but have been proved to655

achieve promising performance for imbalanced data in other domains. Among

these method, SysFV, CSFV amd BCSFV are cost-sensitive based imbalanced

learning methods, while Easy and Bal combine the sampling strategies and en-

semble learning methods.

Table 13 presents the average indicator values of KPWE and the 21 class660

imbalanced baseline methods on PROMISE dataset, NASA dataset, and across

all 44 projects of the two datasets. Figure 10 depicts the box-plots of four

indicators for the 22 methods across all 44 projects. We describe the findings

from Table 13 and Figure 10 as follows.

First, from Table 13, the results show that our method KPWE achieves the665

best average performance in terms of F-measure and MCC on two datasets and

across all 44 projects. More specifically, across all 44 projects, the average F-

measure value (0.480) by KPWE yields improvements between 7.6% (for CEL)

and 34.5% (for RULR) with an average improvement of 19.6%, the average
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MCC value (0.356) by KPWE gains improvements between 17.9% (for Easy)670

and 140.5% (for SMNB) with an average improvement of 56.5%. However,

Easy, Bal, APL outperform our method KPWE in terms of average G-measure

values and Easy outperforms KPWE in terms of the average AUC values across

all 44 projects. Overall, KPWE achieves average improvements of 23.4% and

11.2% over the 21 baseline methods in terms of average G-measure and AUC,675

respectively.
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Figure 10: Box-plots of four indicators for KPWE and 21 class imbalanced learning methods

across all 44 projects.

Second, Figure 10 depicts that KPWE is superior to the 21 baseline methods

in terms of the median F-measure and MCC across all 44 projects. In particular,

the median MCC by KPWE is higher than the maximum MCC by RONB and

SMNB. In addition, the median G-measure by KPWE is similar to that by APL680
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Figure 11: Comparison of KPWE against the 21 class imbalanced learning methods with

Friedman test and Nemenyi’s post-hoc test in terms of four indicators.

and Bal, whereas the median G-measure and AUC by KPWE are only a little

lower than those by Easy.

Third, Figure 11 visualizes the results of the Friedman test with Nemenyi’s

post-hoc test for KPWE and the 21 class imbalanced learning methods in terms

of the four indicators. As the p values of the Friedman test are all less than685

0.05, there exist significant differences among the 22 methods in terms of all

four indicators. The results of the post-hoc test illustrate that KPWE also

belongs to the top rank group in terms of all indicators. However, in terms of

F-measure, G-measure MCC and AUC, KPWE does not perform significantly

well compared with seven, seven, four and six baseline methods respectively in690

which the common methods are Easy and Bal. These observations manifest that

KPWE, Easy and Bal belong to the top rank group and perform no statistically

significant differences with each other in terms of all four indicators. Since this

is the first work to investigate the performance of method Easy and methods

Bal on software defect data, the experimental results indicate that they are also695
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potentially effective methods for defect prediction as our method KPWE is.

Discussion: The under-sampling methods may neglects the potentially use-

ful information contained in the ignored non-defective modules, and the over-

sampling methods may cause the model over-fitting by adding some redundancy

defective modules. In addition, data sampling based imbalanced learning meth-700

ods usually change the data distribution of the defect data. From this point,

the cost-sensitive learning methods (such as our KPWE method) which does

not change the data distribution are better choices for imbalanced defect data.

Considering the main drawback of under-sampling methods, Easy and Bal sam-

ple multiple subsets from the majority class and then use each of these subsets705

to train an ensemble. Finally, they combine all weak classifiers of these ensem-

bles into a final output [97]. The two methods can wisely explore these ignored

modules, which enable them to perform well on the imbalanced data.

Summary: KPWE performs better than the 21 baseline methods especially in

terms of F-measure and MCC. On average, compared with the baseline meth-

ods, KPWE achieves 19.1%, 23.9%, 57.7%, 11.3% performance improvement

in terms of the four indicators respectively over PROMISE dataset, 21.0%,

23.2%, 53.2%, 11.4% performance improvement in terms of the four indicators

respectively over NASA dataset, and 19.6%, 23.4%, 56.5%, 11.2% performance

improvement in terms of the four indicators respectively across all 44 projects.

In addition, KPWE performs no statistically significant differences compared

with Easy and Bal across all 44 projects in terms of all four indicators.

6. Threats to Validity710

6.1. External validity

External validity focuses on whether our experimental conclusions will vary

on different projects. We conduct experiments on total 44 projects of two de-

fect datasets to reduce the threat for this kind of validity. In addition, since

the features of our benchmark dataset are all static product metrics and the715

modules are abstracted at class level (for PROMISE dataset) and component
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level (for NASA dataset), we cannot claim that our experimental conclusions

can be generalized to the defect datasets with process metrics and the modules

extracted at file level.

6.2. Internal validity720

We implement most baseline methods using the function library of machine

learning and toolbox in MATLAB to reduce the potential influence of the in-

correct implementations on our experimental results. In addition, we tune the

optimal parameter values, such as the width of kernel parameter in KPCA and

the number of hidden nodes in WELM, from a relatively wide range of tested725

options. Nevertheless, a more carefully controlled experiment for the parameter

selection should be considered.

6.3. Construct validity

Although we employ four extensively-used indicators to evaluate the perfor-

mances of KPWE and the baseline methods for defect prediction, these indi-730

cators do not take the effort of inspecting cost into consideration. We will use

the effect-aware indicators to evaluate the effectiveness of our method in future

work.

6.4. Conclusion validity

We use a state-of-the-art double Scott-Knott ESD method to check whether735

the differences between KPWE and the baseline methods are significant. With

this statistic test, the assessment towards the superiority of KPWE is more

rigorous.

7. Conclusion

In this work, we propose a new defect prediction framework KPWE that740

comprises feature extraction stage and model construction stage. In the first

stage, to handle the complex structures in defect data, we learn the represen-

tative features by mapping the original data into a latent feature space with a
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nonlinear feature extraction method KPCA. The mapped features in the new

space can better represent the raw data. In the second stage, we construct a class745

imbalanced classifier on the extracted features by introducing a state-of-the-art

learning algorithm WELM. Besides the advantages of fine generalization ability

and less prone to local optimum, WELM strengthens the impact of defective

modules by assigning them higher weights. We have carefully evaluated KPWE

on 34 projects from PROMISE dataset and 10 projects from NASA dataset with750

four indicators. The experimental results show that KPWE exhibits superiority

over 41 baselines methods, especially in terms of F-measure, MCC and AUC.

In future work, we will provide guidelines on deciding the optimal number of

hidden nodes and kernel parameter values for KPWE, as they vary for different

projects. In addition, we plan to explore the impact of the different kernel755

functions in KPCA and the different activation functions in WELM on the

performance of KPWE.
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