
A Smart Context-aware Program Assistant based on
Dynamic Programming Event Modeling

Xuejiao Zhao1,2, Hongwei Li3, Yutian Tang4, Dongjing Gao5, Lingfeng Bao6, Ching-Hung Lee7
1Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY), NTU, Singapore

2School of Computer Science and Engineering, NTU, Singapore
3School of Computer Information Engineering, Jiangxi Normal University, Nanchang, China

4Department of Computing, The Hong Kong Polytechnic University, Hong Kong
5School of Computer Science, Fudan University, Shanghai, China

6College of Computer Science, Zhejiang University, Hangzhou, China
7Division of Smart Product Design, School of Mechanical and Aerospace Engineering, NTU, Singapore

Email:{xjzhao, leechinghung}@ntu.edu.sg lihongwei@jxnu.edu.cn csytang@comp.polyu.edu.hk

gaodj14@fudan.edu.cn lingfengbao@zju.edu.cn

Abstract—In software development, there is a great demand
for online information and resources. The traditional way for
the developers to access online resources is through formulating
keywords and searching in the web browser. The search results
are limited by the keywords and the web browser also ignores
the developers’ working and search context. Tools that integrate
information retrieval into the IDE are available, but they fail
to perceive the developers’ dynamic working context and use in
the process of online search. In this paper, we present a context-
aware program assistant called amAssist. amAssist monitors the
developers’ development events and models their working context
dynamically, then integrates them with the entire online search
process (e.g. keywords formulation, customized searching, search
results annotation, etc.). We integrate amAssist into the Eclipse
IDE. Our preliminary user study showed that by using our
program assistant, developers can formulate keywords more
accurately and acquire online information and resources more
rapidly. Demo video: https://youtu.be/X4Tkjhc6wfU

I. INTRODUCTION

Interleaving coding, web search, and learning have become

a common practice in software development. There is a great

demand for online information and resources in practice. The

traditional way for the developers to access online information

and resources is through formulating keywords and searching

in the web browser. The quality of search results depends on

the keywords used because the web browser can not perceive

the developers’ working and search context. If the developers

can not formulate keywords to reflect their information needs

accurately, they will spend a lot of time on information

retrieval [1].

Tools that integrate information retrieval into the IDE are

available [2], [3], [4]. However, they only extract a snapshot

of the developers’ working context and integrate it with online

search shallowly. They model the developers’ working context

statistically (e.g., a selected program entity, an exception the

developers currently encountered, etc.). The statistical working

context is only use to augment the search queries rather than

the entire online search process.

In this paper, we present a smart context-aware program

assistant called amAssist. amAssist program assistant models

the developers’ development behaviors dynamically as their

working context, and integrates them with the entire online

search process (e.g. keywords formulation, customized search-

ing, search results annotation, etc.). We unobtrusively monitor

nine kinds of interactive development events (e.g. select, save,

etc.) between the developers and the IDE in time series. These

determine the developers’ working focus over time. We then

use an algorithm called DOI [5], [6] to compute the interest

value of the involved API entities of these programming

events (e.g. “select” the API entity “EditorPart.doSaveAs()”).

With the amAssist program assistant, developers can use their

working context to formulate their search query and customize

their online search. The amAssit program assistant also anno-

tates the list of search results and the content of web pages,

which can assist the developers to locate relevant search results

and related information on the web pages more rapidly. Our

study shows that amAssit can help the developers formulate

more specific queries with working context information. As

such, the developers using amAssist can find and integrate

relevant online programming resources more quickly with less

search queries.

Our preliminary study suggests that the amAssist program

assistant can increase developers’ awareness of their working

context over time. As such, it can help developers formulate

more specific queries with working context information. It can

also help developers to choose their interested and valuable

web pages and locate useful information faster by context-

aware search results annotation.

II. THE amAssist PROGRAM ASSISTANT

The architecture of the amAssist program assistant consists

of two main parts as shown in Fig. 1: the backend compo-

nent monitors and analyzes the developers’ dynamic working

context; the frontend search user interface (UI) presents the

contextual information to the developers and allows them to

use the context to search, refine, and browse online resources

while they read code or program in the IDE.

24

2018 IEEE International Symposium on Software Reliability Engineering Workshops

978-1-5386-9443-5/18/$31.00 ©2018 IEEE
DOI 10.1109/ISSREW.2018.00-36

Authorized licensed use limited to: ShanghaiTech University. Downloaded on November 20,2020 at 03:33:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The Architecture of the amAssist Program Assistant

A. Context Sensing and DOI Computation

The backend component consists of a context sensing com-

ponent and a Degree-of-Interests (DOI) computation compo-

nent.

1) Context Sensing Component: The amAssist program

assistant has been integrated into the Eclipse IDE. It listens

to the Eclipse workbench’s events to monitor the developers’

programming activities in the IDE. It monitors the program-

ming events of the Eclipse workbench and uses these events

to model the developers’ working context. Note that the

event listening occurs unobtrusively in the background without

interrupting the developers’ working flow.

We model each programming event as a tuple (t, a, P, L).
t is the event index which is incremented by one when a new

event is listened. a is the event category value and we sum-

marize and abstract these events into five categories: select,
reveal, save, debug, and execute−exception. These actions

represent the fundamental activities that developers carry out

in the IDE. P is a set of program entities involved in the event

that the developer acts on, including compilation units, classes

(including interfaces), methods, fields, and statements in the

source code. P is resolved by the Java DOM/AST APIs and

Eclipse JDT IJavaElement APIs.

L represents the libraries and framework API entities (e.g.,

classes, methods, and fields) extended by the source code

entities. There are many online resources related to the usage

or extension of libraries or framework APIs. However, the

source code entities of the specific application are meaningless

for online search because they are not standard name and

only can be identified by the developers who named them.

Therefor, the amAssist program assistant uses the Eclipse JDT

DOM/AST APIs to search L (the libraries or framework APIs

which extend from the source code entities P of an event).

The amAssist program assistant also annotates the API entity

that cause runtime exceptions and compilation errors.

2) DOI Computation Component: When developers read

code or program, the amAssist program assistant uses the DOI

algorithm to model their working context. The DOI algorithm

assigns an interest value to every detected API entity and can

detect unusual incidents (e.g., runtime exceptions) or important

focus shifts in the working context. The initial interest value of

an API entity of an event is assigned according to the essential

interest level of current action and the API entity of the event.

An action has one of four interest levels: select < reveal <
save or debug < execute− exception. Let la be the interest

level of an action a, with (1 ≤ la ≤ 4). An API entity has one

of three interest levels: normal < has− compile− error <
cause − exception. Let lapi be the interest level of an API

entity papi, with (1 ≤ lapi ≤ 3).

Assume there is an event e < t, a, P, L > and an API entity

papi ∈ e.L. The initial interest value of papi in the event e (i.e.,

vinit(papi, e)) is computed as γla× lapi, where γ is an integer

constant value (γ > 1). Based on the above definition, the

highest initial interest value belongs to the API entities that

throw an exception. The normal API entities with the action

select is assigned the lowest initial interest value.

When a new event occurs, the amAssist program assistant

updates the interest value of all the distinct API entities in the

working context as follows. The amAssist program assistant

assumes that the older an event e < t, a, P, L > is, the less

interest the developer has in the API entities involved in the

event (i.e., papi ∈ e.L). Thus, it decays the interest value of

an API entity as new events arrive in the working context.

The current interest value of papi in the event e < t, a, P, L >
(i.e., v(papi, e)) is computed as vinit(papi, e)/γ

tm−t where tm
is the current event index.

The amAssist program assistant assumes that if developers

act on an API entity papi more often, they are more interested

in papi. Therefore, amAssist program assistant compute the

interest value of papi in the working context at the current

event index tm (i.e., v(papi, tm)) as
∑

1≤i≤tm
f(papi, e(i)).

The function e(i) returns the event at index i. The function

f(papi, e(i)) returns v(papi, e(i)) if papi ∈ e(i).L; otherwise

it returns 0.

For example, a developer “Reveal” an API entity papi –

“IProgressMonitor”. The initial action interest value la is 2

and the initial API entity interest value lapi is 1. The initial

interest value of “IProgressMonitor” is thus 4. After that, it

decays the interest value of “IProgressMonitor” when new

events arrive in the working context. So the next value of

“IProgressMonitor” are 2, 1, 0.5, 0.25, 0.125 and so on.

B. Interactive Context-Aware Search

Fig. 2 shows the frontend search UI of the amAssist program

assistant. The four red dotted boxes with numbers are the

four views of amAssist: DOI Model view (No.1), Ambient
Search view (No.2), Search Results view (No.3), and Webpage
Overview view (No.4). The workflow of the amAssist program

assistant also follows that sequence. The purple words, arrows,

and solid boxes indicate the main functions of the amAssist
program assistant. This UI not only integrates the entire online

search process, but also uses the developers’ working context

at each step of the search.

25

Authorized licensed use limited to: ShanghaiTech University. Downloaded on November 20,2020 at 03:33:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. The UI of the amAssist Program Assistant

1) DOI Model View: The amAssit program assistant ranks

the API entities in the working context by their interest values.

The flowchart of the DOI Model view is shown in Fig. 3. It

uses an interactive foam tree (Carrot Search API) 1 to present

a brief overview of the API entities that developers may be

most interested in.

The amAssist program assistant can be configured to show

the top N (by default N = 10) highest-interest-value API

entities to the developer. The higher the interest value of

an API entityis, the larger its bubble. The amAssit program

assistant uses two strategies to update the foam tree. First, if

the top 10 API entities N change, it will update the foam

tree accordingly. Second, if the top 10 API entities N do not

change but their interest values change, it will update the foam

size at regular time interval T (by default T = 10 seconds).

2) Ambient Search View: The amAssist program assistant

uses the Google Custom Search API 2 as the underlying search

engine. The developers can choose one or more API entities

in the foam tree to form the keywords in their search queries.

They can customize the chosen API entities or enrich the

chosen API entities with any words they want to use.

The amAssist program assistant allows developers to cus-

tomize the Google Custom Search Engine to search for their

preferred websites by attaching one or more category labels

to these websites. By default, the amAssist program assistant

1http://project.carrot2.org
2https://developers.google.com/custom-search/

Fig. 3. The flowchart of DOI Model View

searches in four categories of popular programming-oriented

websites, such as technical blogs (e.g., www.iteye.com), code

examples (e.g., code.google.com, github), discussion forums

(e.g., zhidao.baidu), and Q&A sites (e.g., stack overflow).

Developers can “Select Preferred Website Category” to inform

the Google Custom Search Engine about their preference for

26

Authorized licensed use limited to: ShanghaiTech University. Downloaded on November 20,2020 at 03:33:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. The flowchart of Ambient Search, Search Results, and Webpage Overview View

a category of websites (e.g., code examples websites). The

amAssist program assistant uses the BOOST mode of Google
Custom Search Engine to promote the search results from

the websites of the developers’ preferred category, without

excluding other websites.

3) Search Results View: The amAssist program assistant

lists the top X (by default X = 50) search results returned

by the search engine in the Search Results view. The amAs-
sist program assistant also annotates the search results and

corresponding web pages by the API entities of the working

context, which can assist the developers in accessing search

results they need more rapidly. For example, in Fig. 2, the

red annotation of the first search result in “Unselect Results”

view shows that this web page contains both the API entity

used as keyword (i.e., EditorPart.doSaveAs()) and other

API entities in the foam tree. These annotation augment the

document surrogate [7].

Furthermore, the amAssist program assistant uses the Lingo

algorithm [8] provided by Carrot Search to cluster the search

results based on their latent topics. To this end, the amAssist
program assistant retrieves the snippet of the top X search

results.

The Lingo algorithm uses conceptually varied cluster labels

first, then assigns web pages to the labels to generate the

clusters [8]. Compared with other topic mining algorithms,

Lingo can generate longer and more descriptive labels which

can assist developers in understanding and selecting groups of

necessary search results in less time. The amAssist program

assistant displays the search results clusters in the lower part

of the Ambient Search view. It shows the topics of the cluster

and the number of search results in the cluster. Developers

can filter the search results by selecting one or more cluster

topics.

4) Webpage Overview View: To help developers grasp the

key information from a particular web page, the Webpage
Overview view of the amAssist program assistant summarizes

the API entities in the foam tree and mentioned in the opened

web page at the same time in a tree view. The tree can be

expanded to show the places where the API entities appear

on the web pages. The amAssist program assistant extracts an

excerpt surrounding these places (e.g., here we use 5 words

before and after the mentioned API entities.) This view can

assist developers in navigating their interested content in the

opened web page faster. The flowchart of the Ambient Search,

Search Results, and Webpage Overview View is shown in

Fig. 4.

III. EVALUATION

We recruited 10 graduate students from the School of

Computer Science, Fudan University to conduct a preliminary

user study to evaluate our amAssit program assistant. The 10

participants were asked to search and use online program re-

sources to debug and extend an existing Eclipse editor plugin.

The participants had to fix one bug and add 2 features named

file save and content statistics. Based on their programming

experience, we matched the participants in pairs and allocated

27

Authorized licensed use limited to: ShanghaiTech University. Downloaded on November 20,2020 at 03:33:09 UTC from IEEE Xplore. Restrictions apply.

them to the experimental group or control group randomly. The

experimental group used the amAssist program assistant while

the control group used the Eclipse IDE and a web browser

to perform the above task. Participants were not familiar with

the Eclipse plugin development.

This preliminary study shows that compared to the control

group, by using the amAssist program assistant, the experi-

mental group was able to formulate search queries with more

specific API keywords. For example, when the user opened a

new editor, the existing implementation threw an IllegalArgu-
mentException. Fixing this bug requires the knowledge of

EditorPart.openEditor() and IEditorInput APIs. In order to get

the resource to fix this bug, a developer of the control group

used the keywords – how to fix IllegalArgumentException.

In contrast, a developer of the experimental group used the

keywords – EditorPart.openEditor() in our foam tree directly.

This keywords contained more specific API entity derived by

our program assistant, which facilitated the developer of the

experimental group to find the related webpages faster.

The ratio of the API entities chosen from the foam tree

in most of the experimental group developers’ queries varied

from 0.37 to 0.5. Only one developer used 0.18 of the API

entities in the foam tree, which was less than the other four

developers. This developer is an experienced Eclipse plugin

developer. This demonstrates that the high utilization of the

API entities in foam tree and the working context in the

foam tree can summarize the developers’ information needs

effectively, especially for beginners.

The average number of keywords for the experimental group

and control group were 19.40 and 15.60 respectively, which

shows that compared to the control group, the experimental

group can formulate more keywords.

The average search time that the experimental group needed

to complete all the tasks was 6.8 times, which was much lower

than the 10.4 the control group needed. This result shows that

compared to the control group, the experimental group can

search fewer times to finish the same tasks.

In addition, according to our observations, the experimental

group could locate relevant online programming resources and

start integrating relevant online resources faster. Although by

no means conclusive, this result suggests that the amAssit pro-

gram assistant based on the developers’ dynamic programming

event modeling can help the developers to formulate better

keywords and locate necessary online programming resources

more rapidly while they work in the IDE.

IV. RELATED WORK

Methods for monitoring the users’ interaction with software

tools and documents and infering their interests or work-

ing context have been developed, including Read and Write

Wear [9], FishEye view [10], Mylar model [6], and concern

code [11]. The amAssist program assistant uses DOI model

was inspired by these corresponding works. To be comparable

to the existing works, the amAssist program assistant tracks

more comprehensive programming events as the developers

interact with the IDE and program entities.

Tools such as Strathcona [12], CodeBroker [13], MFIE [14],

and Suade [15] attempt to use context for code searches. There

are some researches used crowdsourcing knowledge to assist

with software development, e.g. Seahawk [2], BluePrint [3],

and Dora [4], etc. GraPacc [16] used a snapshot of the

currently edited code to search and rank relevant API usage

patterns based on a database of API usage patterns mined

from open source projects. HelpMeOut [17], [18] suggested

program editing to fix compilation errors based on program

editing by other programmers that fix bugs. These tools only

use the current code context and do not search for online

resources. These existing tools consider context as a set

of program entities at the current snapshot of the code. In

contrast, the amAssist program assistant considers context as

a stream of programming events. Furthermore, existing tools

use the program context only to augment the search query. In

comparison, the amAssist program assistant incorporates the

working context in the thorough search procedure tightly and

deeply.

V. CONCLUSION

This paper presented our amAssist program assistant. This

tool unobtrusively monitors and analyzes the developers’ dy-

namic working context. It supports an interactive context-

aware search of online programming resources while devel-

opers are coding or reading code in the IDE. Our preliminary

study suggests that the amAssist program assistant can increase

developers’ awareness of their working context over time. As

such, it can help developers search for more context-aware

queries. It can also help developers to choose web pages which

meet their requirement and locate useful information faster by

context-aware search results annotation.

In the future, we will enhance the amAssist program assis-

tant with advanced Google Custom Search Engine features,

for example tweaking the ranking of the search results using

the interest values of the API entity keywords or refining

the search results using the API entities that are not used

as keywords. We will also integrate the knowledge graph

of the software engineering domain [19], [20], [21] with

some advanced retrieval methods [22] based on knowledge

graph to enhance the search engine. More useful program-

ming resources (e.g. hyperlinks in Stack Overflow [23], and

API [24], etc.) will be introduced into the tool to further

improve programmer development efficiency. We will conduct

a more comprehensive user study to evaluate the amAssist
program assistant and the advantages and disadvantages of

the deep integration of developers’ dynamic working context

while searching online.

VI. ACKNOWLEDGMENTS

This research is supported by the National Research Foun-

dation, Prime Minister’s Office, Singapore under its IDM

Futures Funding Initiative.

28

Authorized licensed use limited to: ShanghaiTech University. Downloaded on November 20,2020 at 03:33:09 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] G. C. Murphy, D. Notkin, and K. Sullivan, “Software reflexion models:
Bridging the gap between source and high-level models,” ACM SIG-
SOFT Software Engineering Notes, vol. 20, no. 4, pp. 18–28, 1995.

[2] A. Bacchelli, L. Ponzanelli, and M. Lanza, “Harnessing stack overflow
for the ide,” in Recommendation Systems for Software Engineering
(RSSE), 2012 Third International Workshop on, pp. 26–30, IEEE, 2012.

[3] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer, “Example-
centric programming: integrating web search into the development
environment,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 513–522, ACM, 2010.

[4] O. Kononenko, D. Dietrich, R. Sharma, and R. Holmes, “Automatically
locating relevant programming help online,” in Visual Languages and
Human-Centric Computing (VL/HCC), 2012 IEEE Symposium on, p-
p. 127–134, IEEE, 2012.

[5] M. Kersten and G. C. Murphy, “Using task context to improve pro-
grammer productivity,” in Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software engineering, pp. 1–
11, ACM, 2006.

[6] M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model for
ides,” in Proceedings of the 4th international conference on Aspect-
oriented software development, pp. 159–168, ACM, 2005.

[7] M. Hearst, Search user interfaces. Cambridge University Press, 2009.

[8] S. Osiński, J. Stefanowski, and D. Weiss, “Lingo: Search results clus-
tering algorithm based on singular value decomposition,” in Intelligent
information processing and web mining, pp. 359–368, Springer, 2004.

[9] W. C. Hill, J. D. Hollan, D. Wroblewski, and T. McCandless, “Edit wear
and read wear,” in Proceedings of the SIGCHI conference on Human
factors in computing systems, pp. 3–9, ACM, 1992.

[10] A. Cockburn and M. Smith, “Hidden messages: evaluating the efficiency
of code elision in program navigation,” Interacting with Computers,
vol. 15, no. 3, pp. 387–407, 2003.

[11] M. P. Robillard and G. C. Murphy, “Automatically inferring concern
code from program investigation activities,” in Automated Software
Engineering, 2003. Proceedings. 18th IEEE International Conference
on, pp. 225–234, IEEE, 2003.

[12] R. Holmes, R. J. Walker, and G. C. Murphy, “Strathcona example
recommendation tool,” ACM SIGSOFT Software Engineering Notes,
vol. 30, no. 5, pp. 237–240, 2005.

[13] Y. Ye and G. Fischer, “Reuse-conducive development environments,”
Automated Software Engineering, vol. 12, no. 2, pp. 199–235, 2005.

[14] J. Wang, X. Peng, Z. Xing, and W. Zhao, “Improving feature location
practice with multi-faceted interactive exploration,” in Proceedings of
the 2013 International Conference on Software Engineering, pp. 762–
771, IEEE Press, 2013.

[15] F. W. Warr and M. P. Robillard, “Suade: Topology-based searches
for software investigation,” in Proceedings of the 29th international
conference on Software Engineering, pp. 780–783, IEEE Computer
Society, 2007.

[16] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Grapacc:
a graph-based pattern-oriented, context-sensitive code completion tool,”
in Proceedings of the 2012 International Conference on Software
Engineering, pp. 1407–1410, IEEE Press, 2012.

[17] O. Kononenko, D. Dietrich, R. Sharma, and R. Holmes, “Automatically
locating relevant programming help online,” in Visual Languages and
Human-Centric Computing (VL/HCC), 2012 IEEE Symposium on, p-
p. 127–134, IEEE, 2012.

[18] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer, “What
would other programmers do: suggesting solutions to error messages,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 1019–1028, ACM, 2010.

[19] X. Zhao, Z. Xing, M. A. Kabir, N. Sawada, J. Li, and S.-W. Lin, “Hdskg:
Harvesting domain specific knowledge graph from content of webpages,”
in Software Analysis, Evolution and Reengineering (SANER), 2017 IEEE
24th International Conference on, pp. 56–67, IEEE, 2017.

[20] X. Zhao, “Hdso: Harvest domain specific non-taxonomic relations of
ontology from internet by deep neural networks (dnn),” BSR winter
school Big Software on the Run: Where Software meets Data, p. 74.

[21] C. Chen, S. Gao, and Z. Xing, “Mining analogical libraries in q&a
discussions–incorporating relational and categorical knowledge into
word embedding,” in Software Analysis, Evolution, and Reengineering
(SANER), 2016 IEEE 23rd International Conference on, vol. 1, pp. 338–
348, IEEE, 2016.

[22] C.-H. Lee, Y.-H. Wang, and A. J. Trappey, “Ontology-based reasoning
for the intelligent handling of customer complaints,” Computers &
Industrial Engineering, vol. 84, pp. 144–155, 2015.

[23] J. Li, Z. Xing, D. Ye, and X. Zhao, “From discussion to wisdom:
web resource recommendation for hyperlinks in stack overflow,” in
Proceedings of the 31st Annual ACM Symposium on Applied Computing,
pp. 1127–1133, ACM, 2016.

[24] F. Thung, “Api recommendation system for software development,” in
Automated Software Engineering (ASE), 2016 31st IEEE/ACM Interna-
tional Conference on, pp. 896–899, IEEE, 2016.

29

Authorized licensed use limited to: ShanghaiTech University. Downloaded on November 20,2020 at 03:33:09 UTC from IEEE Xplore. Restrictions apply.

