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ABSTRACT

Software defect prediction aims at detecting the defect-prone soft-
ware modules by mining historical development data from software
repositories. If such modules are identified at the early stage of the
development, it can save large amounts of resources. Cross Version
Defect Prediction (CVDP) is a practical scenario by training the
classification model on the historical data of the prior version and
then predicting the defect labels of modules of the current version.
However, software development is a constantly-evolving process
which leads to the data distribution differences across versions
within the same project. The distribution differences will degrade
the performance of the classification model. In this paper, we ap-
proach this issue by leveraging a state-of-the-art Dissimilarity-
based Sparse Subset Selection (DS®) method. This method selects
a representative module subset from the prior version based on
the pairwise dissimilarities between the modules of two versions
and assigns each module of the current version to one of the rep-
resentative modules. These selected modules can well represent
the modules of the current version, thus mitigating the distribu-
tion differences. We evaluate the effectiveness of DS* for CVDP
performance on total 40 cross-version pairs from 56 versions of 15
projects with three traditional and two effort-aware indicators. The
extensive experiments show that DS outperforms three baseline
methods, especially in terms of two effort-aware indicators.
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1 INTRODUCTION

Due to some unexpected mistakes in the design, development or
configuration process, it is inevitable to introduce defects into the
software products [14]. To fix the defects before releasing the prod-
ucts, effectively detecting them is essential for Software Quality
Assurance (SQA). Thanks to the prevalence of the version control
systems and the issue tracking systems in software development,
it is easy to obtain the historical software development data from
these software repositories. In the past decade, researchers have
proposed various defect prediction methods for improving software
quality. These methods analyze the historical data and explore the
inherent relationship between the software metrics (such as code
complexity metrics and process metrics) and the defect information
which can be collected from the software repositories [25].

Many studies on defect prediction investigate the performance
of various methods, especially the machine learning methods, for
Within Project Defect Prediction (WPDP) [15, 29, 56]. Generally,
WPDP trains a classification model on labeled software modules,
and then tests on the unlabeled modules within the same project.
Most existing studies conduct WPDP by using cross-validation
methods to partition the defect data of a specific version of a project
into the training set and test set, which is also called Inner Version
Defect Prediction (IVDP). For a mature project with multiple ver-
sions, it is more practical to use the historical defect data of the
prior version to conduct defect prediction on the unlabeled modules
(the methods, classes or packages) of the upcoming version (a.k.a.
current version) [35], i.e., Cross Version Defect Prediction (CVDP).
However, there are only a few studies on CVDP.

1.1 Motivation

Compared with IVDP, CVDP has some unique characteristics. More
concretely, for IVDP, the training set and test set are usually derived
from the same defect data of a specific project version, thus, the
data distributions of the two sets are identical. By contrast, in CVDP
scenario, as the software functions are increasingly complicated,
the modules undergo frequent changes during the version update.
For example, the current version of the project inherits, refactories
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and deletes some existing modules from the prior version, or adds
some new modules [6, 35]. These operations can cause a certain
degree of data distribution differences across versions. Note that
such data distribution differences may result in the majority of
existing methods for CVDP failing to achieve satisfactory CVDP
performance, because these methods use all the labeled data of the
prior version to build classification models and then conduct defect
prediction on the unlabeled modules of the current version.

Two recent studies considered the issue of data distribution dif-
ferences for CVDP. Lu et al. [35] selected some candidate unlabeled
modules from the current version with an active learning method,
and then labeled these modules by querying the software experts
before adding them into the prior version to form a mixed training
set. They expected that these modules can alleviate the distribu-
tion differences by supplementing some distribution information
of the current version into the prior version. However, there are
two major limitations in this method. First, the candidate modules
selected by the active learning method are only informative while
not representative for the current version [20, 31]. Second, this
method needs to query the labels of the candidate modules by the
domain experts, thus, it involves extra labor cost. Another related
study is conducted by Amasaki [1]. He selected a subset of the
prior version with a nearest neighbor filter method [49] which is
originally designed for Cross Project Defect Prediction (CPDP).
They found that the method is not applicable for improving CVDP
performance. However, they do not explore the reasons behind.

In this paper, we utilize a new method to mitigate the effect
of the data distribution differences, which screens representative
modules from the prior version instead of picking up and labeling
modules from the current version. In particular, we leverage a novel
Dissimilarity-based Spare Subset Selection (DS*) method [11] to
achieve this purpose. DS® selects a representation module subset
from the prior version based on the pairwise dissimilarities between
the modules of the two versions. The selected subset can effectively
represent each module of the current version, which promote to
narrow the gap of the data distribution differences across versions.
Since we preserve the modules of the prior version that can well
represent the modules of the current version and eliminate the
irrelevant ones, the model built with this selected subset tends to
obtain higher performance compared with the model built on all the
modules of the prior version. In addition, we replicate the work in
[1] and perform a further analysis for the reasons of inapplicability.

To evaluate the effectiveness of the DS® method, we choose
56 versions of 15 projects as our benchmark dataset and conduct
extensive experiments on total 40 cross-version pairs with five
evaluation indicators, including three traditional and two effort-
aware indicators. The three traditional indicators, i.e., F-measure,
g-mean and Balance, do not consider the cost of quality assurance
effort required to review the modules [7, 49, 63]. As inspecting
all the modules is not always feasible due to the constraint of the
test resources, we further employ two effort-aware indicators, i.e.,
Effort-Aware Recall (EARecall) and Effort-Aware F-measure
(EAF-measure). We calculate the two indicators by improving a
new module ranking method recently proposed in [19].

By using the 40 cross-version pairs, DS® achieves average F-
measure, g-mean, Balance, EARecall and EAF-measure of 0.347,
0.451, 0.476, 0.345 and 0.313, respectively. The experimental results
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show that DS® performs better than three baseline methods (i.e.,
ALL method, Turhan Filter, and Peter Filter), especially in terms
of the two effort-aware indicators. More specifically, the average
EARecall with DS3 improves by 15.0%, 16.3%, and 22.5%, while the
average EAF-measure with DS® improves by 13.2%, 15.5%, and 18.3%
compared with the three baseline methods, respectively.

1.2 Contributions
In this paper, we highlight the following main contributions:

(1) Since the data distribution differences between two versions
have adverse impacts on the CVDP performance, in this pa-
per, we address this issue by leveraging a state-of-the-art DS®
method to select a representative module subset from the prior
version as the new training set. The refined module subset can
well represent the modules of the current version.

(2) We perform extensive experiments on total 40 cross-version
pairs, derived from 56 versions of 15 projects. To the best of our
knowledge, this is the first work to conduct such a large-scale
empirical study for CVDP.

(3) We employ five indicators, including three typical and two
effort-aware ones, as our performance measurement. This en-
ables us to perform a comprehensive evaluation on the effective-
ness of the selected module subset by DS? for CVDP. In addition,
we improve a novel module ranking method to calculate the
effort-aware indicators.

(4) Compared with three baseline methods, the experiments mani-
fest that DS? achieves encouraging results with fewer modules
(no more than 50% of the original set) in most cases, especially
in terms of the two effort-aware indicators. In addition, a fur-
ther analysis shows that DS? can alleviate the class imbalance
issue to some extent by increasing the proportion of defective
modules in the training set on most cross-version pairs.

2 RELATED WORK

2.1 Cross Version Defect Prediction

Bennin et al. [4] evaluated the defect prediction performance of 11
basic classification models in IVDP and CVDP scenarios with an
effort-aware indicator. They conducted experiments on 25 projects
(each one has two versions with process metrics) and found that
the optimal models for the two defect prediction scenarios are not
identical due to different data as the training set. However, the
performance differences of the 11 models are not significant in both
scenarios. Premraj et al. [46] investigated the impacts of code and
network metrics on the defect prediction performance of six classi-
fication models. They considered three scenarios, including IVDP,
CVDP and CPDP. CPDP uses the defect data of another project
as the training set. Experiments on three projects (each with two
versions) suggested that the network metrics are better than the
code metrics in most cases. Holschuh et al. [18] explored the per-
formance of CVDP on a large software system by collecting four
types of metrics. The experiments on six projects (each with three
versions) showed that the overall performance is unsatisfactory.
Monden et al. [40] evaluated the cost effectiveness of defect predic-
tion on three classification models by comparing seven test effort
allocation strategies. The results on one project with five versions
revealed that the reduction of test effort relied on the appropriate
test strategy. Khoshgoftaar et al. [28] studied the performance of
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six classification models on one project with four versions and
found that CART model with lease absolute deviation performed
the best. Zhao et al. [62] investigated the relationship between the
context-based cohesion metrics and the defect-proneness in IVDP
and CVDP scenarios. They conducted CVDP study on four projects
with total 19 versions and found that context-based cohesion met-
rics had negative impacts on defect prediction performance but
can be complementary to non-context-based metrics. Yang et al
[61] surveyed the impacts of code, process and slice-based cohesion
metrics on defect prediction performance in IVDP, CVDP and CPDP
scenarios. They conducted CVDP study on one project with seven
versions and found that slice-based cohesion metrics had adverse
impacts on defect prediction performance but can be complemen-
tary to the commonly used metrics. Wang et al. [50] explored the
performance of their proposed semantic metrics on defect predic-
tion in CVDP and CPDP scenarios. The experiments on ten projects
with 26 versions showed the superiority of the semantic metrics
compared with traditional CK metrics and AST metrics.

These studies fed all modules of the prior version into the classi-
fication model without taking the data distribution differences into
account and conducted experiments on small datasets. Although
two recent studies considered the distribution differences issue,
they exist some limitations as presented in Section 1.1. Different
from the above studies, in this paper, we introduce a novel subset
selection method that can be well suitable for CVDP and use a
larger benchmark dataset with total 56 versions of 15 projects.

2.2 Training subset selection

Although no studies have proposed a customized training subset
selection for CVDP, there are some related studies for CPDP which
focus on selecting a module subset from a project (a.k.a. source
project) to build the classification model for the modules of another
project (a.k.a. target project). Turhan et al. [49] proposed a nearest
neighbor filter method, called Turhan Filter (TF), to select a module
subset of the source project. More specifically, for each module in
the target project, TF first selects its top-k’ nearest modules, then
these candidate modules without duplication constitute the training
set. They found that CPDP with TF achieved similar classification
performance compared with IVDP on some cross-project pairs.
Peter et al. [45] proposed a module selection strategy, called Peter
Filter (PF), with a clustering algorithm. More concretely, PF first
combined the data of the two projects, then used k-means clustering
algorithm to cluster the mixed data and discarded the clusters that
did not contain any module of the target project. For each module
of the target project in the remaining clusters, the method selected
its nearest neighbor module in the source project. These selected
modules were fed into the classification model. The results showed
that PF led to the performance improvement compared with the
TF method and IVDP performance. Kawata et al. [27] proposed
a relevancy filter method, called Kawata Filter (KF), for source
project data simplification. KF first used the DBSCAN algorithm
to cluster the mixed project data. For the clusters that contained at
least one module of the target project, the modules of the source
project in such clusters formed the final training data.

All these methods were designed for CPDP and took Euclidean
distance or data density as filter criterion to select the modules

from the source project as the training set. However, the distribu-
tions between diverse projects have significant difference [22]. In
CVDP scenario, since the current version usually carries plenty of
information from the prior version [9], the distribution differences
across versions usually are smaller than that across projects. This
is an essential distinction between CVDP and CPDP. In addition,
although Amasaki [1] has manifested that TF is not applicable for
CVDP, the applicability of other methods for CVDP is not clear yet.

In this work, we introduce an advanced subset selection method,
called DS3, for CVDP. Different from the above methods, DS> uti-
lizes the pairwise dissimilarities (not limit to the Euclidean distance)
between the modules of two versions to minimize the representing
cost towards the modules of the current version by the modules of
the prior version. In addition, the above subset selection methods
for CPDP could not determine the number of selected modules,
while DS? can achieve it by tuning a control parameter.

3 THE DS* METHOD

We denote the modules of the prior version as S = [s1, s2, ..., Sm],
where s; = [$i1,5i2, ..o» sir]T € R", m and r indicate the number of
modules and metrics of the prior version, respectively. Similarly,
we denote the modules of the current version as T = [t1, t2, ..., tn],
where t; = [tjl, tj2y e tjq]T € RY9, n and q indicate the number
of modules and metrics of the current version, respectively. Note
that r is equal to g in our CVDP scenario. In addition, we define
a dissimilarity matrix D = [d; j]fj fn between the modules of
the two versions, where d;; indicates the dissimilarity between the
module s; and ¢; which indicates how well s; represents ¢;. Here, the
dissimilarity can be defined as the Euclidean, Hamming, Manhattan
or Chi-square distance between the pairwise modules across the
two versions. More specifically, smaller d;; means that s; represents
tj better. The purpose of DS3 is to find a representative module
subset of S that can effectively represent each module of T.
Dissimilarity matrix D is formulated as

dI du diz - din
D=|:|=]: _ | erm™, (1)
dg; dml dmz e dmn
where d; € R" is the ith row of D, i.e., the dissimilarities between
the ith module of S and each module of T.
To indicate whether a module in S is a representative of the
module in T, we define a 0-1 indicator matrix P as

P;r pu1 P12 - Pin

P=|:|= e R™", (2)

P’rlr‘l ml Pm2 °* Pmn
where p;; € {0,1} is the indicator of s; representing t;. p;; = 1
indicates that s; is a representative of t; while p;; = 0 indicates that
s; is not a representative of t;. In order to guarantee that each t; is
represented by one s;, we have the constrain as /2, p;j = 1.

To have a better understanding of the above description, we
provide a graphic depiction in Figure 1. Each red circle denotes
a module of the prior version while each yellow circle represents
a module of the current version, and the dotted line signifies the
correlation (i.e., dissimilarity in DS3) between two modules. Note
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that if there exists a dotted line between a red circle and a blue circle
after conducting DS? method, it means that the red circle can well
represent the yellow circle. Subfigure 1(a) shows the inputs of DS?
method, i.e., the pairwise dissimilarities between the modules of the
two versions. Subfigure 1(b) depicts the results after running DS?
method. It shows that DS? method selects three modules (i.e., s2, S4
and s¢) from the prior version as the representatives to represent
each module of the current version. Note that there is only one
dotted line connecting with each yellow circle since we assign each
module of the current version with only one module of the prior
version. However, there can have multiple dotted lines connecting
with each red circle since each module of the prior version can
represent multiple modules of the current version, for example, sz
can represent #1 and f3.

Current Version

(a) Pairwise dissimilarities between two versions

Prior Version
Si

& & & & & o

I
| ~ -7~
|

© 9 © ¢

Current Version
(b) Selected modules that represent the current version

Figure 1: Illustration of the function of DS3.

To select a representative subset of S based on the dissimilarity
matrix D, DS? simultaneously optimizes the following two terms:
minimize the representing cost towards T by S and the number of
selected modules from S . In terms of the first term, if s; is selected
as a representative of ¢;, then the representing cost towards t; by s;
is calculated as d;jp;; € {0,d;;} (since p;; € {0, 1}). Further, the rep-
resenting cost towards y; by S is calculated as Zl’-’;l d;jpij, and the
representing cost towards T by S is calculated as Z;?:l X dijpij.
In terms of the second term, if s; is a representative towards some
modules of T, then not all elements in the ith row of P are zeros, i.e.,
Z}l:l pij # 0. Thus, restricting the number of the selected represen-
tative modules means to control the number of nonzero rows in
the indicator matrix P. From the above description, we can clearly
see that the optimization problem turns to solve the element p;; in
the indicator matrix P.

The optimization problem is formulated as the following row-
sparsity regularized trace minimization problem

n m m
min Z Z dijpij + A Z Illp:llz)
i=1

i} S
Jj=1i=1
- 3
st > piy=LYjs pij € {0,1},Vij,
i=1
where || - ||2 denotes the I; norm, I(-) denotes the indicator function
that is equal to 0 if all the elements of p; (i € [1,2, ..., m]) are zeros
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and is equal to 1 otherwise. The first term 27:1 X dijpij refers to
the representing cost towards T by S, while the second term denotes
the number of selected representatives from S which corresponds
to the number of nonzero rows in matrix P. The parameter A is used
to make a trade-off between the two terms. Small A value indicates
that more emphases are put on lower representing cost towards T
by S, thus more representative modules will be selected.

However, Eq.(3) is a non-convex optimization problem since it
involves to count the sum of a set of indicator function values (i.e.,
the term » /7 I(||p;l2) constrained by p;; € {0, 1}) of P. Elhamifar
et al. [11] suggested to solve the above optimization problem as the
following convex relaxation

n

m m
min Z Z dijpij + /12 llpill2
=1

ey} 5313 i

- @
s.t. Zpij =1Vj; pije [0,1],Vi,j.
i=1

Compared with Eq.(3), Eq.(4) calculates the sum of the I, norm
of all rows in matrix P instead of the sum of the indicator function
values and uses the non-negative p;; € [0, 1] to relax the term p;; €
{0, 1}. From this perspective, p;;j can be treated as the probability
of tj represented by s;. Eq.(4) can be rewritten as the matrix form

min  tr(DTP) + A||P||,

’ T T (5)

st. 1"p=1T,Pe[0,1],

where [[P[l2 = X7, [Ipill2, 1 is a vector whose elements are all 1,
and tr(-) denotes the trace function used to calculate the inner prod-
uct of two matrices. Eq.(5) can be solve by the Alternating Direction
Method of Multipliers (ADMM) framework [5, 13]. After obtaining
the optimal solution ﬁ the line numbers of the nonzero rows in
matrix P correspond to the indexes of the modules in S that are
selected to represent the modules of T. For example, for Subfigure
1(b) that selected three representative modules of the prior version
(i.e., S) to represent the four modules of the current version (ie., T),

0O 0 0 0
1 0 1 0
. -, . 0O 0 0 O
the optimal solution P is like the following formula o o o 1l
0O 0 0 0
0 1 0 O

where the values in the positions with 1 are nonzero. The line num-
bers of the nonzero rows in matrix P is 2, 4, 6, which indicates that
the second (i.e., s2), the fourth (i.e., s4) and the sixth (i.e., ss) module
of the prior version (i.e., S) are selected as the representatives.

To have an intuitive feeling about the effect of DS® for select-
ing the representative modules, we conduct a case study on two
synthetic datasets to simulate CVDP scenario. We generate the
non-defective modules of the prior version by drawing data points
(red hexagrams) from a mixture of Gaussians with means (2,3.5)
and (4,5.5) with 120 points in each set, and the defective modules
by drawing 90 data points (green rhombuses) from a mixture of
Gaussians with means (6.5,2.5), as showed in Subfigure 2(a). To re-
flect the distribution differences between two versions, we generate
the non-defective modules of the current version by drawing data
points (purple triangles) from a mixture of Gaussians with means
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(a) Prior Version (b) Current Version

(c) A =0.005

() A =0.001

(e) A =0.0001

Figure 2: An illustrative example for Representative modules selected by DS® with different A on synthetic data.

(1.5,3) and (4.5,6) with 60 points in each set, and the defective mod-
ules by drawing 40 data points (blue pentagrams) from a mixture of
Gaussians with means (6.5,2.5), as showed in Subfigure 2(b). Subfig-
ures 2(c), 2(d), and 2(e) depict the selected non-defective modules
(black hexagrams) and defective modules (black rhombuses) from
the prior version by DS® with three different A values. From the last
three subfigures, we can see that the selected modules are close to
the positions of the modules in 2(b). In addition, we observe that as
the A decreases, the number of selected modules by DS3 increases.

4 EXPERIMENTAL SETUP
4.1 Benchmark Dataset

In this work, we use 56 versions of 15 software projects provided
by Madeyski and Jureczko [37] as our benchmark dataset. Each
module denotes a class file of the Java project and is characterized
by 20 software metrics and a binary label for the defect proneness
(i.e., a defective module is labeled as 1, otherwise as 0). The detailed
descriptions of these metrics are available in [24].

Detailed statistic description of each version for all 15 projects
is reported in Table 1, where # M, # DM, % DM denote the number
of modules, the number of defective modules and the percentage
of defective modules, respectively.

4.2 Evaluation Indicators

In this section, we describe the five evaluation indicators, including
three traditional indicators and two effort-aware indicators, used
to measure the performance of CVDP. In terms of the traditional
evaluation indicators, we choose F-measure, g-mean and Balance,
which are widely used in previous defect prediction studies [17, 22,
23, 30, 39, 43, 47, 48, 51, 52, 55, 57]. The three indicators are derived
from the basic indicators listed in Table 2 and defined as
2 = recall * precision

F- = ’
measure recall+preCiSion ( )
N TP
- = ’
g-mean \/(TN+FP)*(TP+FN) ?
0 — FPR)?2 + (1 — TPR)?
Balance = 1 — ( ) 2 ( : (8)

The three indicators do not consider the quality assurance effort
required to review the modules by assuming that there are enough
resources to inspect all the modules [7, 49, 63]. However, inspect-
ing all the modules is not always practical due to the limited test
resources. As suggested by Mende et al. [38], it is more realistic to

Table 1: Statistic of the Benchmark Dataset

Project | #M #DM %DM |  Project | #M #DM %DM
ant-1.3 126 20 15.9% xalan-2.4 723 110 15.2%
ant-1.4 178 40 22.5% xalan-2.5 803 387 48.2%
ant-1.5 293 32 10.9% xalan-2.6 885 411 46.4%
ant-1.6 352 92 26.1% xalan-2.7 909 898 98.8%
ant-1.7 745 166 22.3% xerces-init 162 77 47.5%
camel-1.2 608 216 35.5% xerces-1.2 440 71 16.1%
camel-1.4 872 145 16.6% xerces-1.3 453 69 15.2%

camel-1.6 965 188 19.5%
ivy-1.1 111 63 56.8%
ivy-1.4 241 16 6.6%

jEdit-3.2.1 272 90 33.1%

jEdit-4.0 306 75 24.5%

jEdit-4.1 312 79 25.3%

jEdit-4.2 367 48 13.1%

jEdit-4.3 492 11 2.2%

log4j-1.0 135 34 25.2%

log4j-1.1 109 37 33.9%

log4j-12 | 205 189  922%

lucene-2.0 195 91 46.7%

lucene-2.2 247 144 58.3%

lucene-2.4 340 203 59.7%

xerces-1.4.4 588 437 74.3%
prop2-ver225 1864 147 7.9%
prop2-ver236 2403 76 3.2%
prop2-ver245 2023 103 5.1%
prop2-ver256 2025 625 30.9%
prop2-ver-265 | 2372 229 9.7%
prop3-ver285 1709 177 10.4%
prop3-ver292 2330 209 9.0%
prop3-ver305 2388 89 3.7%
prop3-ver318 2440 365 15.0%
prop4-ver347 2906 162 5.6%
prop4-ver355 2802 924 33.0%
prop4-ver362 2865 213 7.4%

prop5-ver4 3514 264 7.5%

poi-1.5 237 141 59.5% prop5-ver40 3815 466 12.2%
poi-2.5.1 385 248 64.4% prop5-ver85 3509 930 26.5%
poi-3.0 442 281 63.6% prop5-ver121 3445 425 12.3%

synapse-1.0 | 157 16 10.2%
synapse-1.1 | 222 60 27.0%
velocity-1.4 | 196 147 75.0%
velocity-1.5 | 214 142 66.4%

prop5-ver157 2863 367 12.8%
prop5-ver185 3260 268 8.2%
prop42-ver452 317 33 10.4%
prop42-ver453 259 20 7.7%

Table 2: Basic Indicators for Defect Prediction

‘ # Predicted defective ‘ # Predicted non-defective

# Actual defective ‘ True Positive (TP) ‘ False Negative (FN)

# Actual non-defective ‘ False Positive (FP) ‘ True Negative (TN)
True Positive Rate (TPR) or recall ‘ %
False Positive Rate (FPR) ‘ %
precision ‘ %

use indicators that consider the inspection effort (also known as
effort-aware indicators) in defect prediction.

Effort-aware indicators evaluate the defect prediction perfor-
mance within a limited effort required to review the predicted
defective modules [3, 26, 60]. In reality, we always want to maxi-
mize the benefit of any effort for quality assurance. Generally, the
effort denotes the number of Lines Of Code (LOC) that need to
be inspected, and the benefit is the number or percentage of defec-
tive modules discovered. In this work, we set the number of LOC
reviewed as 20% of total LOC following previous studies [21, 53, 58].

To calculate the effort-aware indicators, the common method is
to rank the modules according to a rule first, and then simulate an
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expert to inspect these modules one at a time in order. In the mean-
while, the percentage of LOC reviewed and the number of detected
defective modules are counted. The process is terminated when
20% of total LOC have been inspected. The proportion of inspected
defective modules among all the actual defective modules is treated
as an effort-aware indicator, which is called PofB20 (Percentage
of Bugs) or CE20 (Cost Effectiveness) in [21, 53, 59, 61].

In previous studies, researchers ranked the modules in a descend-
ing order based on the degree of their predicted risk values. The
risk values are defined as the probability outputs of a classification
model for the modules [21, 38, 53] or the ratios of the probability
outputs to LOC of the corresponding modules [58, 59, 61]. Recently,
Huang et al. [19] proposed a novel ranking method to calculate
the effort-aware indicators for defective change prediction, called
Classifier Before Sorting (CBS). Their experimental results have
shown that the derived indicator values significantly improved
based on this ranking method. The basic idea of CBS is that among
the changes that are predicted to be potentially defective by a clas-
sifier, small changes that are measured by the modified LOC should
be inspected first, since they give the best bang for the buck [19].
However, this ranking method can not obtain the indicator val-
ues in some cases. More specifically, CBS only ranks the predicted
defective changes without considering the other changes. There-
fore, if the sum of the modified LOC of these ranked changes does
not reach 20% of total modified LOC, the effort-aware indicators
could not be calculated. To remedy this limitation, in this work, we
propose an improved ranking method based on CBS to rank the
modules in our CVDP scenario. More specially, we divide the mod-
ules into two parts (i.e., the predicted defective and non-defective
modules) according to their predicted labels by the logistic regres-
sion classifier. First, we rank the predicted defective modules in a
ascending order based on their LOC values, this process is identical
to CBS. Then we rank the predicted non-defective module with
the same process. Finally, we concatenate the latter ranking results
behind the former ranking results. This ensures to always calculate
the two effort-aware indicator values.

We concisely describe how to calculate the two effort-aware
indicators. Let the current version of a given project have n modules
and n; defective modules. After inspecting 20% of total LOC based
on our improved ranking method, n” modules and n;’ defective
modules have been reviewed.

The first effort-aware indicator is defined as the proportion of
the inspected defective modules among all actual defective modules,
which is called Recall by Huang et al. [19]. To distinguish it from
the traditional Recall indicator, we name it Effort-Aware Recall
(EARecall). EARecall is defined as

ni !
EARecall = — 9)
np

Higher EARecall value indicates that more defective modules
can be detected when 20% of total LOC are inspected.

In addition, we define Effore-Aware Precision (EAPrecision)
which is equal to the proportion of the inspected defective mod-
ules among all inspected modules, i.e., EAPrecision = nn—l,, Higher
EAPrecision signifies lower false alarm which will enhance the
developers’ confidence on the CVDP performance when inspecting
20% of total LOC [19].
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Given the definition of EARecall and EAPrecision, another effort-
aware indicator, Effort-Aware F-measure (EAF-measure) is de-
fined as

2 x EARecall + EAPrecision
EAF-measure = — (10)
EARecall + EAPrecision

The worst case is that the inspected modules are all non-defective
modules, then the values of EARecall and EAPrecision are all equal
to 0. Thus, the value of EAF-measure makes no sense since the
denominator in Eq.(10) is 0. In this case, we set the value of EAF-
measure as 0 which indicates the worst CVDP performance.

4.3 Classification Model

In this work, we select the logistic regression classifier as our basic
learner. This classifier is extensively used in previous defect predic-
tion studies [29, 32-34, 41-44, 53, 58, 59, 61, 63]. We implement this
classifier with the LIBLINEAR package [12], a well-known package
for solving large-scale problems with the coordinate descent algo-
rithm. We run the package with the options "-S 0" (which denotes
the logistic regression) and "-B 1" (which means no bias term added)
following the previous work [32-34, 43].

4.4 DS’ configuration

Regarding the implementation of DS?, we measure the dissimilarity
with Chi-square distance following the original work [11]. The Chi-
r (Sio—t jo)z
o=1 2*(Sio+[jo)’
where r denotes the feature dimension. In terms of the A which
is used to control the number of selected modules, lower A value
means more representative modules will be chosen. In this work,
we determine the A value based on a threshold which denotes the
desired proportion of the selected modules. More specifically, we
set the initial value of A as 0.05 and gradually reduce it until the
proportion of the selected modules is larger than the threshold for
the first time. We empirically set six thresholds, i.e., 20%, 30%,..., 70%,
to determine the values of A. According to the above description,
the final proportion of the selected modules may be a little higher
than the corresponding threshold.

square distance of module s; and ¢; is defined as 3}

4.5 Cross Version Scenario Design

In this work, we conduct the CVDP experiment between two nearest
versions. More specifically, for the ant project in benchmark dataset,
the selected modules by DS? from version 1.3 are used to train
the logistic regression classifier. Then this model is tested on the
modules in version 1.4.

5 EXPERIMENTAL RESULTS

RQ1: Could the modules selected by DS* achieve better CVDP
performance than the whole modules of the prior version?

Method: As the aim of this work is to pick up a representative
module subset of the prior version that well describes the modules
of the current version, this question investigates whether the elab-
orately selected modules by DS® can achieve better or comparative
CVDP performance than the whole modules of the prior version.
Therefore, we choose the method that uses all data of the prior
version to conduct CVDP as our baseline method, which is called
ALL. For the results analysis, Wilcoxon signed-rank test [16] is
used to examine whether the differences between DS* and ALL are
statistically significant at a confidence level of 95% across all cross-
version pairs. This test is applicable to check two variables whose
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Table 3: Detailed Results of for the Five Indicators for DS? and ALL Method on Each Cross-Version Pair

| F-measure | g-mean | Balance | EARecall | EAF-measure |
Cross-VersionPair | ) | Ds3 | Al | DS3 | Al | DS3 | Al | D3 | Al | Ds3 | L T
13 14 0143  0.230 | 0302 0397 | 0361 0412 0.100  0.175 0151  0.246 | 1.8E-03 70%
14 15 0308 0324 | 0534 0576 | 0510 0551 0344  0.375 0163 0324 | 2.7E-03  60%
ant 15 1.6 0350  0.419 | 0471  0.525 0454  0.492 0.196  0.250 0308  0.380 | 1.1E-03  70%
16 17 | 0525 0511 | 0.643 0625 | 0.605  0.585 0.247  0.253 0340  0.357 | 14E-03  70%
12 14 0314 0386 | 0504 0.598 | 0488  0.577 0.241  0.331 0283  0.336 | 1.6E-03 50%
camel 14 16 | 0214 0172 | 0360 0315 | 0.387 0364 0.255  0.436 0.200  0.242 | 2.8E-03 30%
vy | 11 14 | 0160 0189 | 0592  0.635 | 0591  0.635 | 0.250 0250 | 0.085 0.104 | 1.8E-03  40%
321 40 0509 0510 | 0.668  0.657 | 0.660  0.640 0373 0.413 0373 0434 | 1.9E-03 40%
o 40 41 0.603  0.615 0.680  0.695 0.632  0.649 0380  0.405 0513 0.529 | 14E-03 50%
JEdit 41 42 0533 0.542 0764 0766 | 0.748  0.750 0417  0.438 0396  0.420 | 2.0E-04 70%
42 43 0195 0.250 | 0586  0.657 | 0548  0.613 0364  0.455 0.200  0.250 | 5.0E-04 60%
1.0 11 | 0656 0646 | 0721 0716 | 0.689  0.687 0351  0.378 0473 0491 | 6.0E-03 40%
log; 11 1.2 0441 0441 | 0500 0360 | 0.487 0363 0.164  0.185 0279 0302 | 24E-02 20%
20 22 0598  0.678 | 0.612 0422 | 0.605  0.433 0306  0.556 0429 0544 | 2.6E-02 20%
lucene | 22 24 | 0730 0682 | 0318  0.492 0368  0.489 | 0.557 0507 | 0.542 0536 | 4.0E-03 30%
15 251 | 0844 0838 | 0727  0.742 0.702  0.725 0.544  0.548 0638  0.651 | 1.1E-03 60%
poi 251 30 | 0789 0787 | 0639  0.756 | 0619  0.755 0.505 0.459 0577 0592 | 2.6E-03 40%
synapse | 1.0 11 | 0313 0420 | 0451 0.556 | 0444 0.533 | 0167 0250 | 0253  0.330 | 2.6E-02 20%
velocity | 14 15 | 0777 0766 | 0198 0275 | 0321 0349 | 0.697 0.690 | 0.656 0.656 | 1.0E-02 20%
24 25 0162  0.187 0.297 0321 | 0358  0.369 0.080  0.093 0145  0.166 | 1.2E-02 20%
alan 25 26 0558  0.572 | 0.603 0490 | 0.599  0.489 0.294  0.423 0360  0.391 | 6.0E-03 30%
26 27 0.576  0.656 | 0.636 0597 | 0579  0.591 0.238  0.292 0385  0.451 | 8.0E-03 20%
init 12 | 0286 0281 | 0489 0465 | 0.486  0.466 0.676  0.690 | 0.265 0260 | 1.1E-03  70%
erces 12 13 | 0152  0.082 | 0293 0208 | 0354 0324 0072 0.551 0.128  0.180 | 8.0E-03 20%
13 144 | 0209 0212 0342 0344 | 0375  0.377 0101  0.105 0183  0.190 | 2.5E-03 40%
225 236 | 0038 0054 | 0195 0226 | 0320 0.330 0.013  0.026 0013 0.029 | 4.0E-03 20%
236 245 | 0036 0070 | 0139  0.197 | 0307  0.320 0379  0.398 0061  0.066 | 6.0E-04 40%
prop2 245 256 | 0.019  0.009 | 0.098  0.069 | 0.300  0.29 0365  0.413 0277  0.299 | 1.1E-03 50%
256 265 | 0208 0222 | 0.518 0508 | 0.509 0497 | 0.262 0.258 0171  0.193 | 14E-03 40%
285 292 | 0182 0209 | 0324 0352 0.367  0.381 0.201  0.211 0.077  0.086 | 1.0E-04 70%
prop3 292 305 | 0.161  0.197 0333 0380 | 0372 0.396 | 0.180 0.146 0054  0.197 | 1.0E-04 70%
305 318 | 0.047  0.057 | 0.157 0.173 0310 0314 | 0.436 0.430 0191  0.201 | 3.0E-04 60%
347 355 | 0.024 0021 | 0109  0.04 | 0301  0.301 0326 0.342 0.265  0.271 | 1.1E-03 20%
prop4 | 355 362 | 0.152  0.220 | 0491 0467 | 0.487  0.456 0155  0.183 0.08  0.185 | 8.0E-04 30%
4 40 0.083 008 | 0212 0212 | 0325 0325 0511  0.534 0.170 0.170 | 3.9E-03  20%
40 85 | 0.121 009 | 0254 0225 | 0339 0329 0427 0438 | 0.305 0302 | 1.9E-03 30%
props 85 121 | 0338 0329 | 0560 0526 | 0.534 0502 | 0.268 0.242 0275  0.280 | 1.8E-03 40%
121 157 | 0220 0203 | 0.369 0348 | 0391 0380 | 0.134 0123 | 0.213 0203 | 1.8E-03 30%
157 185 | 0358  0.385 0522  0.543 0490  0.506 0.243  0.265 0323 0351 | 4.0E-03 20%
propd2 | 452 453 | 0235 0316 | 0438  0.534 | 0434 0504 | 0.200 0.300 | 0242 0316 | 20E-02 20%
Average 0329  0.347 0441 0451 | 0469  0.476 0300  0.345 0276  0.313
W/D/L 24/2/14 22/1/17 23/2/15 31/1/8 34/2/4
P 0.012 0.255 0.202 1.55E-04 3.26E-07
d 0.067 0.038 0.04 0.193 0.149

distributions are unclear [2, 10]. The difference is significant if the
p value is lower than 0.05. Further, effect size, Cliff’s Delta [36], is
applied to qualify the amount of the difference. The difference is
substantial if the d value is greater than or equal to 0.146 [8, 53, 58].
Results: Since we set six thresholds to control the proportion of
selected modules, we obtain six sets of results for each indicator
on each cross-version pair. In this work, as we emphasize the im-
portance and practicability of the effort-aware indicators on CVDP
performance especially for the EAF-measure, we only report the
results correspond to the best EAF-measure value among the six
sets of results for each cross-version pair. The detailed results under
each threshold can be found in our online supplemental materials
[54]. Table 3 reports the detailed results of the five evaluation in-
dicators for DS® and ALL method on each cross-version pair. For

the ease of replicating our experimental results, we also report the
threshold and A value corresponding to the best EAF-measure. The
source codes and benchmark dataset of this work are available in
our online materials. In Table 3, the best indicator values among
DS? and ALL are in bold while the same values are shaded in gray.
The three numbers in Win/Draw/Loss (W/D/L) denote the counts
of indicator values by DS® larger than, equal to and lower than
that by ALL, respectively. From Table 3, we have the following
observations:

First, in terms of the three traditional indicators, DS? achieves
the better average values on the three indicators across the 40 cross-
version pairs compared with ALL. More specifically, the W/D/L
values show that DS3 is better than ALL method on 24, 22, and
23 cross-version pairs respectively, but the average values of the
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three indicators by DS only gain small improvements against
ALL. In addition, the p values signify that the difference between
DS? and ALL is statistically significant for F-measure while not
significant for g-mean and Balance, and the d values indicate that
the differences on the three indicators are not substantial.
Second, in terms of the two effort-aware indicators, DS® also
achieves the highest average values against ALL. More concretely,
in terms of EARecall, the W/D/L value shows that DS? is superior
to ALL on 31 cross-version pairs and the average EARecall by DS?
gains the improvement by 15.0% against ALL. In terms of EAF-
measure, the W/D/L value shows that DS® outperforms ALL on 34
cross-version pairs and the average EAF-measure by DS makes
the improvement by 13.2% against ALL. In addition, the p values
and d values indicate that the differences between DS? and ALL for
the two indicators are statistically significant and substantial.
Third, in terms of the threshold which indicates the approximate
percentage of the selected modules, we observe that DS obtains
the best EAF-measure values with thresholds no less than 50% (as
in bold) on 29 out of 40 cross-version pairs. It indicates that DS® can
select only a small proportion of modules of the prior version to
achieve encouraging CVDP performance on effort-aware indicators
and comparative CVDP performance on traditional indicators in
most cases.
Discussion: The takeaway lesson of the third finding is that when
conducting CVDP, it is not necessary to use all the modules of the
prior version to train the defect prediction model for the current
version, since some modules may be the noisy modules. These use-
less modules may have no discriminant ability or even negative
impacts towards the classification task. A representative module
subset of the prior version can replace the whole original data to
construct an effective prediction model in most cases. The reason is
that each module of the current version is assigned to a representa-
tive module of the module set selected by DS3, the modules of the
prior version that may not effectively represent the modules of the
current version are eliminated. Therefore, the model built on the
module subset has the potential to improve the CVDP performance
compared with the method using all modules of the prior version.
However, the CVDP performance of the model built on the mod-
ule subset is not superior to that built on all modules in some cases,
such as the cross-version pairs on prop5 project. The potential rea-
son is that the module subset sometimes may cause information
loss by removing some informative modules, which will decrease
the CVDP performance of the model. For example, considering
the cross-version pairs on prop5 project, the last column shows
that the proportion of the selected modules are between 20% and
40%. Compared with the all modules, the subset may contain less
information. However, from the indicator values, we can observe
that only in a few cases, the differences between DS? and ALL are
relatively large. While in other cases, the indicator values of the two
methods are similar. Since using a module subset to conduct CVDP
can save a large amount of memory and computing overheads, the
advantage of DS will become more apparent when the number of
modules of the prior version increases.
Answer: To summary, DS is effective in selecting a representative
subset for encouraging and comparable CVDP performance against
the whole modules of the prior version in most cross-version pairs,
especially in terms of the two effort-aware indicators.
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RQ2: Are the representative modules selected by DS® more
effective than that by other subset selection methods?

Method: Since various subset selection methods will select dif-
ferent modules as the representatives, this question explores how
effective the selected modules by DS® are compared with that by
other subset selection methods. A sample method for selecting the
module subset is random sampling. The main drawback of random
sampling is that it may select a subset that only consists of non-
defective modules. This is due to the class imbalance issue in most
defect data, i.e., the non-defective modules comprise the majority.
Therefore, when the module set is highly imbalanced, it is a high
probability that random sampling fails to select any defective mod-
ule. In that case, we could not build a feasible classification model.
In addition, since the modules are selected without any criterion,
the performance of the resultant model will be unstable. Hence, we
do not choose random sampling as our baseline method. However,
to the best of our knowledge, there have no existing subset selection
methods that are tailored for CVDP. In this work, we select some
typical subset selection methods that are designed for CPDP task
(as mentioned in Section 2.2) as our baseline methods. Thus, this
question can also investigate whether these methods are appropri-
ate for CVDP. In CVDP scenario, the modules of the prior (current)
version are treated as the ones of the source (target) project in
CPDP scenario. The first baseline method is the TF method [49].
We follow the original work to set k" as 10. Although Amasaki [1]
has verified that this method was not helpful for improving CVDP
performance, but they did not analyze the reasons. We replicate
this method for CVDP on our benchmark dataset and explore the
reasons in RQ3. The second baseline method is the PF method [45].
We follow the original study to set the parameter k of k-means
algorithm as £ (where m and n denote the number of modules
in the prior and current version respectively), expecting that each
cluster tends to have 10 modules in average. Note that the k-means
algorithm needs to randomly initialize the central points, we run
PF 30 times and record the average indicator values. In addition,
we also implement the KF method [27]. This method involves two

Table 4: Average Indicator Values and Statistic Values of The
Five Indicators for DS*> and The Two Baseline Methods

Indicators ‘ Methods ‘ Average W/D/L P d
DS3 0.347
F-measure TF 0326 24/4/12 0004  0.076
PF 0.310 35/1/4  4.00E-06 0.114
DS3 0.451
g-mean TF 0436 21/2/17 0218  0.051
PF 0.436 27/1/12 0.024 0.056
DS3 0.476
Balance TF 0464 22/2/16 0207  0.046
PF 0.465 27/1/12 0.043 0.043
DS3 0.345
EARecall TF 0.297  31/2/7  6.90E-05 0.206
PF 0.282 34/0/6  9.00E-06  0.247
DS3 0.313
EAF-measure |  TF 0271 36/0/4 152E-07 0.175
PF 0.264 40/0/0  4.29E-08  0.204
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Figure 3: Box-plots of five indicators for DS? and two subset selection baseline methods.

parameters, the number of minimum records and the distance. We
implement KF following the parameter setting in the original study
and the default setting in Weka tool. The experiment show that, in
some cross-version pairs, KF under both settings only selects very
few modules as the training set since they treat many modules as
noise and discard them. However, insufficient training set may lead
the model overfitting. In addition, KF under the two settings only
selects the non-defective modules as the training set in some pairs.
Further, we conduct more experiments with different parameter
settings and find that the results of KF are very sensitive to the
settings. Thus, we do not choose KF as our baseline method.
Results: Due to the space limit, we only present the average indica-
tor values and the statistic values in Table 4, and the box-plots of the
five indicators for DS® and the two baseline methods across all pairs
in Figure 3. Detailed results are available in our online materials.
From the table and figure, we have the following findings:

First, in terms of the three traditional indicators, Table 4 shows
that DS? achieves the best average values compared with the two
baseline methods. More specifically, the W/D/L values show that
DS? is better than the two methods on more than half of cross-
version pairs for all three indicators; compared with the two base-
line methods, the average F-measure by DS? gains the improve-
ments by 6.3% and 11.9% respectively, the average g-mean by DS?
makes the improvements by 3.6% and 3.5% respectively,while the av-
erage Balance by DS? achieves the improvements by 2.6% and 2.5%
respectively. The p values signify that the differences on F-measure
between DS and two baseline methods, and the differences on
g-mean and Balance between DS? and PF are significant. However,
the d values signify that the differences are not substantial.

Second, in terms of EARecall, Table 4 shows that DS obtains
better performance on 31 and 34 out of 40 cross-version pairs than
the two baseline methods, respectively; the average EARecall by
DS? gains the improvements by 16.3% and 22.5% against TF and PF,
respectively. In terms of EAF-measure, DS® obtains better perfor-
mance on 36 and all cross-version pairs than TF and PF, respectively;
the average EAF-measure by DS makes the improvements by 15.5%
and 18.3% against TF and PF, respectively. In addition, the p values
and d values indicate that the differences on the two indicators be-
tween DS? and the two baseline methods are statistically significant
and substantial.

Third, Figure 3 shows that, in terms of the three typical indicators,
the median values of the three indicators by DS? are higher than
that by PF, the median values of the g-mean and Balance by DS?
are nearly the same as that by TF; in terms of the two effort-aware

indicators, the median values of the EARecall and EAF-measure by
DS? are much higher than that by the two baseline methods.
Discussion: The principles of DS® and the two baseline methods
are different. DS? selects the subset by solving an optimization
problem involving two terms. The first term utilizes the pairwise
dissimilarities to minimize the representing cost, instead of simply
selecting the neighbors of the modules of the current version as the
two baseline methods do. DS? assigns each module of the current
version to a representative module of the prior version, therefore,
the selected modules by DS? can better characterize the modules
of the current version. The second term is used to constrain the
number of the selected modules, while the two baseline methods
can not determine how many modules are selected. This means
that DS? can control the proportion of the training set according
to the practice conditions, such as the constraints of the memory
and computing power, thus DS is more flexible to conduct subset
selection for CVDP.
Answer: To sum up, the module set selected by DS is more ef-
fective to improve CVDP performance than the modules selected
by the two baseline methods, especially in terms of the two effort-
aware indicators.
RQ3: What are the differences between the modules selected
by DS® and that by the two baseline methods?
Method: The subset selection methods differ in the modules se-
lected. In this question, we further explore the differences among
the module subsets of the prior version selected by the three meth-
ods in RQ2. Here, we mainly focus on the number of the selected
modules by these methods. In general, the method that selects fewer
modules as training set to achieve satisfactory CVDP performance
is more preferred.
Results: To answer this question, we record the number of modules
selected by the three methods. In addition, as most defect data are
imbalanced, this may lead a method to select a subset that only
contains defective modules. In this case, this method will loss its
purpose to select an effective training set from the prior version
since only one type of modules can not construct a discriminable
model. Therefore, we also record the number of selected defective
modules. Table 5 reports the detailed results, where % D denotes the
percentage of the defective modules in original data, # SM, # SD, %
SD denote the number of selected modules, the number of selected
defective modules and the percentage of selected defective modules,
respectively. From Table 5, we have the following observations:
First, in terms of TF, from Table 1 and Table 5, we find that TF
almost selects all the modules of the prior version as the training
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Table 5: Detailed Statistic of Selected Modules by DS® and
Two Subset Selection Baseline Methods

| ALL | DS3 | TF | PF
Cross-VersionPair | oy | 45M  #SD  %SD | #SM  #SD  %SD | #SM  #SD  %SD
13 14 15.9% 90 14 15.6% 126 20 15.9% 112 18 16.1%
14 15 22.5% 107 24 22.4% 178 40 22.5% 137 31 22.6%
ant 15 1.6 10.9% 206 19 9.2% 293 32 10.9% 257 24 9.3%

1.6 1.7 26.1% 250 60 24.0% 352 92 26.1% 298 75 25.2%

12 14 35.5% 305 119 39.0% 599 214 35.7% 442 161 36.4%
camel 14 1.6 16.6% 265 57 21.5% 863 144 16.7% 655 107 16.3%

vy | 11 14 | 568% | 45 23 511% | 111 63 56.8% | 83 49 59.0%
321 40 |331% | 112 35  313% | 272 90  331% | 239 77  322%

4.0 4.1 24.5% 155 38 24.5% 305 75 24.6% 254 57 22.4%

JEdit 4.1 4.2 | 253% | 237 58  245% | 311 79 254% | 254 63 24.8%
42 43 | 131% | 231 32 13.9% | 367 48  13.1% | 280 37  131%

» 10 L1 | 252% | 55 16 29.1% | 133 34  256% | 93 23 247%
log4j 11 12 | 339% | 22 8  364% | 109 37  339% | 9 31 323%
20 22 194 91 469% | 169 74  43.8%

lucene | 22 24 | 583% | 88 59 67.0% | 247 144 583% | 202 112 554%

46.7%‘ 40 27 67.5%

‘ 15 251 ‘ 59.5% | 144 84  583% ‘ 237 141 59.5% ‘ 165 95 57.6%
\ \ \
\ \ \

poi 251 3.0 | 644% | 158 80  50.6% | 369 232  62.9% | 265 145 54.7%
synapse | 1.0 11 | 102% | 35 7 20.0% | 155 16 103% | 104 13 125%
velocity | 14 15 | 75.0% | 40 36 90.0% | 195 147 754% | 113 91  80.5%

2.4 2.5 15.2% 151 29 19.2% 719 109 15.2% 545 78 14.3%
2.5 2.6 48.2% 263 146 55.5% 801 387 48.3% 636 313 49.2%
2.6 2.7 46.4% 199 111 55.8% 811 348 42.9% 636 263 41.4%

xalan

init 1.2 47.5% 118 62 52.5% 162 77 47.5% 97 44 45.4%
12 13 16.1% 98 17 17.3% 434 71 16.4% 326 46 14.1%
13 1.4.4 | 15.2% 188 37 19.7% 447 69 15.4% 266 45 16.9%

xerces

225 236 7.9% 376 45 12.0% 1778 144 8.1% 960 101 10.5%
236 245 3.2% 1005 51 5.1% 2169 76 3.5% 954 45 4.7%
prop2 245 256 5.1% 1019 76 7.5% 1998 103 5.2% 1517 79 5.2%
256 265 30.9% 821 243 29.6% 1914 618 32.3% 906 301 33.2%

285 292 10.4% 1305 145 11.1% 1555 172 11.1% 761 97 12.7%
292 305 9.0% 1646 186 11.3% | 2146 208 9.7% 1308 147 11.2%

prop3
305 318 3.7% 1476 70 4.7% 2247 88 3.9% 1700 66 3.9%

347 355 5.6% 622 53 8.5% 2708 153 5.6% 1243 60 4.8%
prop4 355 362 33.0% 868 260 30.0% 2699 906 33.6% 1812 591 32.6%

4 40 7.5% 704 74 10.5% | 3302 256 7.8% 1688 151 8.9%
40 85 12.2% 1147 157 13.7% | 3653 408 11.2% 2297 223 9.7%
85 121 26.5% 1436 426 29.7% | 3429 892 26.0% 2464 666 27.0%

rop5
prop 121 157 12.3% 1060 211 19.9% | 3181 419 13.2% 1494 261 17.4%
157 185 12.8% 597 133 22.3% | 2752 366 13.3% 1498 233 15.6%
prop42 452 453 10.4% 73 13 17.8% 292 30 10.3% 177 20 11.3%

set in most cases, which will lead TF to achieve the similar perfor-
mance as the ALL method. Thus TF could not improve the CVDP
performance which is consistent with the conclusion in [1].

Second, in terms of the number of selected modules, we find that
DS3 selects the fewest modules on 36 out of 40 cross-version pairs
compared with the two baseline methods, which signifies that DS?
is more effective for data reduction while still maintaining the great
performance as mentioned in RQ2.

Third, in terms of the percentage of selected defective modules,

the percentage values for DS? that are larger than the original
percentages (i.e., reported in % D) are in bold. We find that DS?
improves the percentage of defective modules in the new training
set on 28 out of 40 cross-version pairs. In addition, PF improves the
percentage of defective modules on 20 pairs while the percentage
values of the modules selected by TF are quite similar to that of the
original data on almost all pairs.
Discussion: Since the defective modules will cause the software
failure or incorrect outcomes [14], in general, SQA team expects
to detect more defective modules at the early stage of the soft-
ware development, although it may increase the probability of false
alarm (i.e., a non-defective module is predicted as defective one).
Increasing the percentage of the defective modules in the training
set is conducive to the trained model bias to the defective modules,
especially for the imbalanced defect data. It means that, to a certain
extent, DS® and PF can promote to relieve the class imbalance of
the training set for better CVDP performance.

Zhou Xu, Shuai Li, Yutian Tang, Xiapu Luo, Tao Zhang, Jin Liu, and Jun Xu

Answer: Overall, DS® can choose fewer modules from the prior
version as the representative ones compared with the two baseline
methods on most cross-version pairs. In addition, DS3 can allevi-
ate the class imbalance issue by improving the percentage of the
defective modules in the selected subset on most cross-version
pairs.

6 THREATS TO VALIDITY

Threats to External Validity: External Validity focuses on the
generalization of the experimental conclusions to other datasets.
To minimize the threats, we choose 56 versions of 15 projects to
conduct the CVDP experiments. However, the metrics of the bench-
mark dataset are at the code level, thus, whether our findings are
identical to other datasets with process metrics, network metrics
and text metrics is unclear. In addition, the 15 projects are developed
with Java language, experiments on other projects that developed
with C, C++, or Python will be performed in future.

Threats to Internal Validity: Internal Validity pays attention to
the impacts of classification models, parameter settings on the
conclusions. Here, we only use the logistic regression classifier, the
effectiveness of the selected module subset on other classifiers need
to be further explored since the performance of various classifiers
has significant differences [15]. Regarding DS® method, there is
only one parameter, i.e., A, needs to be tuned. This parameter is
related to the number of the selected modules. We empirical set six
thresholds to determine this parameter. A fine-grained threshold
setting will be considered in our future work.

Threats to Construct Validity: Construct Validity relates to the
suitability of the evaluation indicators. Here, we choose three typ-
ical and two effort-aware indicators as our measurement criteria,
which enables us to have a comprehensive evaluation of the CVDP
performance with different module subsets as the training data.

7 CONCLUSION

In this work, we introduce a new subset selection method DS>
to relieve the distribution differences between cross-version data
for CVDP. Given the pairwise dissimilarities between the modules
across versions, DS? finds a module subset of the prior version to
well represent the modules of the current version by solving a row-
sparsity regularized trace minimization problem. As illustrated in
Section 5.1 and 5.2, the experiments on total 40 cross-version pairs
show that the module subset selected by DS? achieves better CVDP
performance compared with all data and the subsets selected by two
baseline methods, especially in terms of effort-aware indicators.
Our future work involves employing more classifiers and defect
datasets to enrich our experiments. In addition, we also plan to
investigate the applicability of DS? for CPDP scenario and other
software engineering problems, such as test case selection.
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