
Constructing Feature Model by Identifying
Variability-aware Modules

Yutian Tang, Hareton Leung
Department of Computing

The Hong Kong Polytechnic University, Hong Kong

{csytang,cshleung}@comp.polyu.edu.hk

Abstract—Modeling variability, known as building feature
models, should be an essential step in the whole process of
product line development, maintenance and testing. The work
on feature model recovery serves as a foundation and further
contributes to product line development and variability-aware
analysis. Different from the architecture recovery process even
though they somewhat share the same process, the variability is
not considered in all architecture recovery techniques. In this pa-
per, we proposed a feature model recovery technique VMS, which
gives a variability-aware analysis on the program and further
constructs modules for feature model mining. With our work, we
bring the variability information into architecture and build the
feature model directly from the source base. Our experimental
results suggest that our approach performs competitively and
outperforms six other representative approaches for architecture
recovery.

Index Terms—feature model recovery; variability-aware mod-
ularity; feature modules; configuration; product line;

I. INTRODUCTION

Software Product Line (SPL) is regarded as an efficient

means for constructing software products within the same

domain that contains multiple customized assets [1]. Successful

adoptions of product lines could assist stakeholders provide

applications with low costs, fast time to market and high quality,

since code and designs are highly reused in each variant within

a product family [1], [2].

Variants in a product family are distinguished from features;

the domain experts are required to analyze the domain and

describe the features needed and set the potential relations

and constraints between these features. For instance, feature

receive, send and different email classification strategies should

be explored for an email product line. Despite the product line

has been broadly adopted as a paradigm in product developing,

the complexity of work is still a major risk to undertake for

companies. Furthermore, even if companies start from a legacy

system, there are yet many challenges, including recovering

a feature model, mapping feature to its implementation, and

refactoring code fragments into product variants [3].

Among all challenges, the fundamental step to resolve is

to construct a feature model for the legacy system. A feature

model, in a product line, represents a digram contains all

features along with underlying dependencies and constraints

[1]. Explicitly, the feature model can be recovered either

from requirement specification [4] or code base. Thereby,

recovering feature model from legacy code is a primary step

to construct a product line system from a legacy. This task is

paramount for working on an open-source project considering

the requirement specification is normally unreachable in that

situation. Unfortunately, current work on recovering feature

model from source is mainly focused on recovering the feature

model from a collection of product variants instead of legacy

[5]. To cope with this issue, we aim at providing a semi-

automatic approach to explore legacy source code and construct

a feature model for the system, as a fully automatic approach is

unrealistic since the user has to determine the features needed

at least. Specifically, in this work, we target on Java, and it

can be extended to most object-oriented languages. However,

it is designed for C and CPP, which use the preprocessor to

implement the variability.

Motivation. Constructing feature model is highly related

to research work on architecture recovery [6], [7], program

understanding [8]–[10], feature identification [11] and other

relative subfields. However, it is especially different from

other in following aspects: (1) it recovers the architecture

in a variability fashion, that means the variability should also

be mined during the process; (2) apart from the hierarchical

relations between features, dependencies and constraints should

also be discovered, which may affect those features without

any hierarchical relation; and (3) in architecture recovery, both

functional and non-functional requirements are concerned, but

in a product line only functional requirements are considered.

Our Contributions. The main contributions of this paper

are listed as follows:

• We define a variability-aware module system; moreover,

we give a set of definition and a series of constraints to

check whether a module is well-formed;

• We give a variational representation of the program to

further define a set of similarity measurement to assist in

merging modules into features; and

• We provide a comprehensive comparison with six represen-

tative approaches for architecture recovery by investigating

four systems and compare performance from four aspects

by constructing over 80 experiments!

Organization. This paper is organized as follows. Section

II shows our variability-aware module system. Furthermore,

Section III defines a variability-aware program dependency

graph to further support our module system; our VMS approach

is introduced in Section IV. Finally, Section V and VI exhibit

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.21

263

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.21

263

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.21

263

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.21

263

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.21

263

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.21

263

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.21

263

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.21

263

TABLE I
NOTATION OF MODULE MODELING

Notation Remark
e ∈ E expressions
t ∈ T types
x ∈ X function names
o ∈ O configuration options

c ∈ C = 2O configurations

v ∈ V = 2C variability model

Γ ∈ C p→ X p→ T import function signature

Δ ∈ C p→ X p→ T × E function defintion

m = (v, i, j,Γ,Δ) ∈ M; i, j ⊆ O module1

φDUC∧TC (m) constraint function

case study and experimental results. We discuss the results in

Section VII, and related work in Section VIII. We conclude

this paper in Section IX.

II. MODULE MODELING

A. Module with Variability

Our definition, as shown in Tab.I, of a variability-aware mod-

ule is a five-tuple (v, i, j,Γ,Δ) mainly inspired by Christian’s

work [12] and the calculus follows Cardelli’s module system

formalization [13]. Specifically, for configuration, o ∈ O is

a possible configuration option. And C = 2O contains all

possible configurations (2O) that could be derived, given a

configuration option can either be selected or unselected. In a

module, an import or context Γ describes a general environment

for a module. The import function signature is described as a

continuous projection relation from configurations to function

names to types as Γ ∈ C p→ X p→ T , where
p→ is designed to

show a projection relation. The method defined in a module

(Δ) can only be compiled if the configuration is available

as represented as C p→ X . Furthermore, this project will be

furthermore projected to a set of expressions under certain

types as T × E .

For a module, it contains five components: variability module

v, i is a set of configuration options that import from other

modules, and j is defined in this module, import contexts Γ
and functions defined Δ. We will introduce how to build

a module from source in detail in Section IV-B. Besides

these fundamental components in a module, we also define a

constrain function φDUC∧TC (m), which will return a boolean

value to evaluate whether a module is in a well-type status or

not.

B. Module Constraints

Inspired by the conditional compiling in C, which is mainly

represented by #ifdef directive, in order to include a code

fragment in build-time several constraints should be satisfied

and pre-checked over translation units [14]. We will introduce

the constrain space with a running example.

Def-Use Constraints(DUC): Given a module, regardless its

size, it should be compiled safe without any errors. In this

part, we try to simulate how JVM converts source code to

1i: configuration options imported, j: configuration options defined

bytecode and reports error if necessary. Unlike JVM which

really processes the code, we just record the constrains required

in this step. Specifically, we recover following constraints as

compiling constrains: All variables(global and local), fields,

methods, classes, interfaces that are used in this module but

not defined should be added as DUC, except those defined in

third-party API or fundamental framework, like JDK. Namely,

it mainly includes the constraints from the def-use chain.

Type Constraints(TC): A parser will return an error when

it copes with a type error, which is further extended as type

checker tools in variability context [15]. In type constrains, we

consider the program from two perspectives:

• A type error may come from a type is used but not defined;

technically, no class or interface is binding with this type;

• When using a type in a module, its parent type should also

be covered. We extend this to three cases: (1) variable/field;

(2) method; (3) interface/class. For example, in (1), a

variable in a child class can be used without define when

it is defined in its parent class; (2) is simply referred as

method overriding; and (3) is considered as a case of

inheritance.

More formally, as represented in Section II-A, we create a

formula to represent these constraints as:

φDUC∧TC (m) , (1)

which will give a boolean value to show where a module m
is well-typed. Technically, we also use this function to return

all missing types.

III. VARIABILITY-AWARE PROGRAM DEPENDENCY GRAPH

(varPDG)

Unfortunately, even with the variability-aware module sys-

tem, it is not sufficient to recover the feature model, considering

no operations are defined on these modules. For example, what

is the safe scenario to combine two modules into one, and how

to map the source code to modules. In this section, we will

illustrate how to give a variability-aware presentation of source

code and how to explore the configuration options from the

source base.

A. Building varPDG

A program dependency graph (PDG) is a combination of

a program’s control dependency graph (CDG) and its data

dependency graph (DDG) [16]. And we extend this graph by

associating conditions with method calls, which means if and

only if several conditions are satisfied the method invocation

or instance creation can occur. For example, considering the

code excerpt shown in Fig.1(left), PDG is built by extracting

and tracing control dependency and data dependency. To build

a variability-aware PDG, namely varPDG, the options within

the program should be tracked. In our example, there are

three options at line 1, 5 and 7 respectively, and the PDG are

modified by adding these options as conditions; literately, we

use cond[+](’+’ shows the line number) to show an option at

a certain line.

264264264264264264264264

�����������	
����
���������
���������������������������
�������	 �����
���!�� �"����#� ������
���$����"�����%
�������!�� ������
���!�� �"����%
��������������	
���������	
����	
����	�&��	�����������
���!�� �"����%
�������	���
���'
(

����	���
��������������������)��!��������

 �������*���������"��$����+�������'�%
�����������	
����$���

���� �������*�������	���	
����$���
�����*�����

�� �������*����������$����*���,���-$�� ��&����	������"������%
��$����*�����.������#� �������*������ ��$����!	���'�%
��$����$����*����������#�	���$����$����*����'�%
�� �������*�������/����$����!	����.�����0�������%

(
����	���
'

�

1
2
3

4

5
6

7

8
9
1:
11

��

�

�

�

�

�

	

���

���

�

�

��

��

�����

��������

��������

�������

��

�

�

�
�

�

	

���

������

�

�

��

��
�����

��������

��������

�������

����	
�

����	��

����	
�

Fig. 1. An example of varPDG

By tracking all these options in source along with the

underlying relations, the program can be represented in a

variational matter, similar to variational Abstract Syntax Tree

(varAST) in C [17], and labelled each node in PDG with a

presence condition if possible. By tracking these, we can further

extend our module system (in Sec.II) with presence condition
in a variability-aware matter. Concretely, it helps to define the

conditions that should be satisfied to execute some functions or

code fragments. For example, recall our example in Fig.1, the

cond[7] controls node 8 to 11. But there is a dependency

between cond[5] and cond[7] (cond[5]→cond[7]),

which leads to a result that node 8 to 11 can be executed, if

and only if the condition cond[7]∧cond[5] is TRUE

B. Tracing Options with Pointer Analysis

To build a varPDG, the configuration options should be

explored and extracted from source code. Unlike the macro

strategy used in C, in OO programming language, like java,

the configuration options are extremely difficult to track and

explore. Considering the optional features will always be

compiled or not, unlike the strategy used in C, where there is

a stand-alone file to indicate configuration settings used in a

specific build.

Listing 1. Running example of core idea in option controller

if(!batch){...
if (doSplash) {
splash = initializedSplash(); }
}
...
if(splash!=null){...}

1) CFL-reachability Points-to Analysis For Controlling: To

resolve this, we adopt Context-Free-Language (CFL) reachabil-

ity points-to analysis to track options with a higher precision.

Here, we adopt CFL-reachability points-to resolve this [18].

Specifically, we only use language LF and discard the regular

language RC , which ensures calling context sensitivity. LF

gives a graphical representation G of a Java program and

there are four canonical statements that could define edges in

between:

• Allocation x = new O: edge o
new−−→ x ∈ G

• Assignment x = y: edge y
assign−−−−→ x ∈ G

• Field write x.f = y: edge y
store(f)−−−−−→ x ∈ G

• Field read x = y.f: edge y
load(f)−−−−→ x ∈ G

Within G, we use symbol flowsTo → new (assign)
∗

to

indicate the new and assign edges. That is, o flowsTo
v in G represents o within the points-to set of v. Moreover,

the inverse symbol flowsTo is used to trace points-to for

field access. Literately, if there is an flowsTo edge from o
to v, there must be a flowsTo relation should from v to o.

Therefore, we design algorithm Alg. 1 to extract statements

under different cases.

Algorithm 1: Option Controller

Input: cond
Output: StmtcondE,StmtcondUn

1 for each x flowsTo cond do
2 Add x to StmtcondE and StmtcondUn;

3 Add enable statements to StmtcondE, unable statements

to StmtcondUn;

4 while TRUE do
5 for statement s in StmtcondE do
6 if there is a c flowsTo or flowsTo s then
7 Add c to StmtcondE;

8 if StmtcondE not change then
9 break;

10 The same process for StmtcondUn(line 4-9);

11 return StmtcondE,StmtcondUn;

Input. The input for this algorithm is condition expression

cond in program.

Output. The outputs for this algorithm are: (1) StmtcondE
represents statements when this condition is satisfied; and (2)

StmtcondUn represent the opposite case.

Algorithm Body. For StmtcondE, its statements come

from two aspects: one is from the statements, when the

condition cond is enabled(line 3); and another is from points

265265265265265265265265

to analysis, which contains (1) the flowTo relation ends with

code and (2) iteratively adding the statements having flowsTo
or flowsTo relation to the statements in StmtcondE until

the set does not change (line 4-9). And we apply a similar

process for StmtcondUn.

Example. As the code segment shown in List.1, the

option controller algorithm will extract three options: batch,

doSplash and splash. And it can find the underlying

relations between these options as: ¬ batch ∧ doSplash
→ splash, which mean the option splash is dependence

on both ¬ batch and doSplash are TRUE.

IV. VMS FEATURE MODEL RECOVERY APPROACH

A. Overview

Now, we will introduce our idea in general. Basically,

building a feature model from a legacy source requires

processing source code and clustering similar code fragments

into several clusters. However, this faces the obstacle when

coping with certain cases (see Section I motivation). Our

approach, variability-aware feature model recovery, VMS, will

build the variability-aware modules to resolve this. In general,

it contains three steps:

1) Step 1: Initially, VMS will extract all common modules

from the system. For example, in Fig.2, VMS will first

find the source code for SPL and PrevalyerSPL
without any optional features;

2) Step 2: Then, VMS will enable one configuration option

in the common modules found in Step 1 to track all

optional features. For each iteration, if there are some

modules that become valid during this iteration, we will

try to package these modules into a cluster, which is an

optional feature in our context. In the example, we try

to find optional feature like Replication along with

its configuration option; and

3) Step 3: For each potential optional feature found in Step
2, we perform a type-checking and concern separation

checking to adjust the modules in each feature if

necessary. For example, this step will check whether

the feature Replication is well-typed and whether

there is a need to divide it into two subfeatures. And we

also do this checking on those common features found

in Step 1.

���

�����	
�����

���

���
�� ��
� ������ ���
��� ��������

����������	
���
��
����������
���

����������������� 	�!

����������	
���
���"���	
���
����
�������#�$	��
��%

��������&
��"�&
���
�������#�$	��
��%

����������	
���
���"���!����
�������#�$	��
��%

����������
����"���
�����
�������#�$	��
��%

����������	
���
���"���	
���
����
�������#�$	��
��%

�����������	�����
��!������������ 	�!��'�����

��������	 !���
��� ��������������� ���
��

Fig. 2. The core idea of our VMS approach

B. Build Module from Source

First, we will broadly introduce how to construct a module

from the source base. In this paper, we adopt Java as a target

TABLE II
SYNTAX OF VMS

Notation Syntax Remark Subremark
m ∈ M ::= module

v ∈ V varability model
i ∈ O import option
j ∈ O export optio
Γ import func. sig.
Δ func. definition

e ∈ E ::= expression
Exp. Expression

o ∈ O ::= configuration option
pt(Do)
pt(For)
pt(If)
pt(While)
pt(Switch)

Δ ::= function definition
MethDecl.

t ∈ T ::= types
ITypeBind.

language for our case study and the approach defined in this

paper could easily extend to other Object-oriented environment.

We build a module for each class or interface in a target program

P and group the programming elements parsed by following

syntax. Specifically, in the syntax, we give an ASTNode

expression on the mapping from source code to terms defined

in our variability-aware module system. And all ASTNodes’

types defined under Eclipse Java development tools (JDT) 2.

Specifically, within a module m, it contains v for variability

model, i for import configuration option, j for export

option, Γ for import function signatures and Δ for functions

defined in module. The expression e ∈ E in a module

could be extracted from ASTNode Expression. And the

option o ∈ O in a module could be obtained by applying

points-to analysis with function pt(A), where pt(A) returns

all pointers defined in the conditional expression of A.

In detail, it will check all ASTNodes that can lead to

branches, including DoStatement, ForStatement,

EnhancedForStatement, IfStatement,

WhileStatement, and SwitchStatement. Here,

we define the configuration option as the conditional

expression in Java, due to following reasons: (1) a conditional

expression can lead to a certain path in the control flow

graph with a specific context. That means a conditional

expression could give a variability context for configuration

according to several empirical studies [19], [20]; and (2) our

points-to analysis gives a comprehensive understanding of

underlying relations between these options. The type t ∈ T
could be obtained using type-resolving techniques provided

by Eclipse with an input of the binding of the type. As for

the function definition Δ, it can be extracted by visiting

all MethodDeclaration node in the AST. The rest of

components in module m, including, i, j ∈ O, Γ and v ∈ V ,

could be built based on these basic elements using our

definition in Section II-A.

2Eclipse JDT: http://www.eclipse.org/jdt/

266266266266266266266266

C. Module to Feature

Moving on, we will cluster these modules into features,

where a feature is composed of one or more modules. We first

introduce the measurement for computing the distance between

a module and a feature.

1) Topology based Method Reference: Adopted from Robil-

lard’s topology work [8], we adjust it to compute the uniqueness

of a module to a feature. The core idea of topology analysis

is it computes the similarity using two metrics specificity and

reinforcement. Specifically, the specificity suggests that if an

element A only refers to an other element B should be ranked

higher comparing to C refer to many elements including B.

And the intuition behind reinforcement is that if elements refer

to (or referred from) many elements are in one cluster, possibly

they should be considered as a part of that cluster. Therefore,

we simply compute the uniqueness from a module m to a

feature f as follows.

wtmr (m, f) =
1 + |targets(m) ∩ f |

|targets (m)| · |sources(m) ∩ f |
|sources (m)| ,

(2)

where targets(m) = {m′ |(m,m′) ∈ R} and sources(m) =
{m′ |(m′,m) ∈ R}. Here (m′,m) ∈ R represent there is

method invocation starts from m′ and ends with m.

2) Type Reference: The type reference gives an overview

on types need to be resolved for a module to be a well-typed

module. The type reference ensures consistency and type-safe

and works at a fine granularity. The underlying idea in type

reference is that for each module, it looks up all possible

references, such as, method reference - from method invocation

to method definition; variable reference - from variable access

to its definition; or type reference - from a type reference

to its declaration and explore the types referred in all these

references. For example, in module m, a method defined in

type t is invoked, then we add the reference from module m to

type t. For the type reference, we define two types of vectors:

def (X) and ref (X). Specifically, the vector def (X) ∈ R
n

defines all types within X with n represent the number of

types in the subject program. def (X) = [d1, ..., dn] is defined

as if type i is defined in X , then di should be 1, otherwise di is

0. On the contrast, ref (X) = [r1, ..., rn] shows the reference

information. If a type i is referenced by X , then the ith element

ri in ref (X) should be 1, otherwise it should be 0. Therefore,

the type reference distance wtr is defined as follows.

wtr (m, f) =
1

2n

⎛
⎝ ∑

mi∈f

(
csd (def (m) , ref (mi))+
csd (ref (m) , def (mi))

)⎞⎠ ,

(3)

where n is the number of modules currently in feature f and

csd is defined as cosine similarity between two vectors:

csd (X,Y) =
X · Y
‖X‖ ‖Y ‖ .

The subtlety of this approach is it uses the cross reference

to check how a module mi in feature f relies on m with

csd(def(m), ref(mi)) and the opposite case showing how

the module m relies on a module mi. Here, we exclude the

type defined outside of this program, like a type defined in a

third-party API or a type defined in Java runtime environment.

3) Documental Topic Similarity: In a broader sense, a

program can be considered as a set of documents and defined as

a corpus. Upon this corpus, an information retrieval approach

named Latent Dirichlet Allocation (LDA) [21] can be used to

extract the topic distribution. Furthermore, a topic z is given

based on a multinomial probability distribution upon a set

of words ws obtained from a Dirichlet distribution with the

shape parameter β. For example, given a topic label “life” and

relative words “biology”, “gene”, “water”, and “oxygen” can be

represented with a certain probabilities, which is learned from

the corpus. Using LDA allows us to build a bridge between

a module and a feature. That is, for each module, a vector is

defined with each item infer the probability on each topic. For

example, if there are 5 topics and a module m is represented as

a topic distribution θm = [0.5, 0.3, 0.1, 0.9, 0.1], which states

that this module should be considered a part of topic with

id = 4 with probability 0.9 from a textual perspective. Then

some similarity measure could be used to measure the distance,

like cosine distance or Kullback-Leibler. Technically, in this

paper, we use MALLET tool to create the topic model and adopt

an empirical setting for parameter in LDA with α = 50/T
and β = 0.01, since it has shown its strength across different

corpora [21]. Therefore, we define the topic similarity wdt

using cosine similarity as:

wdt (m, f) =
1

n

∑
mi∈f

θmi
· θm

‖θmi
‖ ‖θm‖

, (4)

where θm defines the topic distribution of m and n represents

the total number of modules in feature f .

4) Put All Pieces Together: For all distance values extracted

(wtmr, wtr and wdt), we define an overview distance value

as w∗. The overview distance w∗ is defined by following

Robillard’s approach, which uses operator x�y = x+y−x ·y
to combine two values [8]. This operator yields a result by

equally treating all arguments and return its overall result within

the range [0, 1]. Thereby, we calculate the overview distance

by: w∗ = wtmr � wdt � wss. In addition, we have to put the

variability-aware constraints on w∗. The value of w∗ represent

the overall similarity between a module and a feature; the more

w∗ close to 1, the more similar they are.

However, combining two modules with high similarity may

still introduce errors, which may come from: (1) import func-

tions signature merging (Γx (c)∪Γy (c)) under a configuration

c ∈ C, (2) combining variability modules (vx ∪ vy) and (3)

merging imported and self-defined configuration options in

each module (ix ∪ iy and jx ∪ jy). Therefore, to merge two

compatible modules to yield a new one, the conflict should be

checked to ensure all modules are well-formed. The conflict

checking process is shown by following logical proofing.

2MALLET: http://mallet.cs.umass.edu/

267267267267267267267267

m′ = (v′, i′, j′,Γ′,Δ′)
v′ = vx ∩ vy \ conflict (Γx,Δx,Γy,Δy)

Γ′ (c) = Γx (c) ∪ Γy (c) \(sig (Δx (c)) ∪ sig (Δy (c)))

Δ′ (c) = Δx (c) ∪Δy (c)

i′ = ix ∪ iy\(jx ∪ jy) , j
′ = jx ∪ jy

(vx, ix, jx,Γx,Δx) • (vy, iy, jy,Γy,Δy) = m′

The module checking, specifically the type checking, of

combining option • detect the error in all components for

each module. Specifically, the module checker will check: (1)

the conflicts from two modules’ merged variability model v′

(v′ = vx ∩ vy \ conflict (Γx,Δx,Γy,Δy)), which mean this

conflict should merge vx and vy with excluding the conflict

from configurations. This exclusion of configuration ensures

that the new variability module v′ can fully map the functions

defined within the new module m′ and all imports. This checks

for the conflict from both modules import functions with same

name but different types; (2) defining sig gives a mapping

sig : (X → E × T)→ (X → T). Therefore sig (Δ) returns a

mapping X → T , which is a Γ in our definition. Therefore,

for the merged import function Γ′(c) under the configuration c
with exclusion of functions required by one module but defined

in another module; (3) merge the configuration-option defined

j′ = jx ∪ jy and functions defined Δ′ (c) = Δ′
x (c) ∪Δ′

y (c);
and (4) merge the configuration-option imports and remove

the import configuration option from one module, but already

defined in another i′ = ix ∪ iy \ (jx ∪ jy). Therefore, we

adopt this checking to check whether a module merge action

is allowed or not. Formally, we define a function to do this

checking as follows.

φ (mx •my) . (5)

This function will return a boolean value to show whether this

merge will lead to any conflict. Return TRUE, if this merge is

safe, and FALSE for the unsafe merge.

D. VMS

Our ultimate target is to build a feature model by analyzing

the source base.

Input. The input for VMS approach includes two values:

#op represents the number of option features preferred in this

feature model, and #cf shows the number of common features

preferred.

Output. The output returns the feature model fm proposed

by VMS automatically.

Algorithm Body. Now, we will introduce the main process

of VMS approach to explore the feature model for source code.

Due to the length of this algorithm, we separate it into several

sections and introduce them respectively.

• Line 1 - 6: First, extract structural information to build

varPDG and for each class/interface create a module;

• Line 7 - 12: We define the common modules as all

modules that must be executed regardless of input context.

Therefore, we follow a Breadth-First-Search structure

to add the “must” invoked functions into the queue Q

Algorithm 2: VMS feature model constructing approach

Input: #op,#cf ,P
Output: fm

1 Build the varPDG for input program P ;

2 Create an empty module to class/interface mapping D;

3 for class c in P do
4 create a module m using c;

5 add (m, c) to D;

6 Create set CommonM ;

7 Create empty queue Q, add entry class en’s main function

main to Q;

/* find common modules */

8 while Q not empty do
9 fhead ← Q.poll;

10 if fhead not visited then
11 Find all functions needprocess, which not defined

in the scope of a condition cond in varPDG;

12 All all modules contain needprocess to

CommonM ;

/* hierarchical clustering all optional module

set and common module set respectively */

13 For each module commonMm in commonM into a

cluster commonMi;

14 Let optional modules optionalM be

optionalM ← D.keyset() \ commonM ;

15 while commonM.size > #cf do
16 Find two cluster commonMi and commonMj with

maximum w∗ (commonMi, commonMj) and

(commonMi · commonMj , OK);
17 Update all reference information;

18 while optionalM.size > #cf do
19 Find two cluster optionalMi and optionalMj with

maximum w∗ (optionalMi, optionalMj) and

(optionalMi · optionalMj , OK);
20 Update all reference information;

21 Create fm from cluster recovered;

22 return fm;

iteratively. To find these “must” invoke functions, VMS
discards method invocation enclosed in statements under

a certain configuration option op ∈ O. With that, the

modules associated with these functions are considered

as common modules;

• Line 13 - 14: As illustrated in the core idea(see Sec-
tion.IV-A), we create two sets: one contains all modules

for common features commonM and another contains

all modules for optional features optionalM ;

• Line 15 - 17: We conduct a hierarchical clustering on the

common module set commonM based on our distance

measurement w∗ under a module conflict checking for-

mula (X,Y,OK). Here, (X,Y,OK) represents there is

no module conflict between module X and Y ; Specifically,

268268268268268268268268

it will do the checking from two parts: (1) check the

module constraints and (2) check potential errors for

variability merging. Thereby, the conflict checking formula

could be represented by.

(X,Y,OK) = φDUC∧TC (X)∧φDUC∧TC (Y)∧φ (X • Y)
• Line 18 - 22: We also apply the hierarchical clustering

upon all modules belonging to the optional module set

optionM .

V. CASE STUDY

A. Experimental Settings

We will introduce the infrastructure we selected, how we

do constraints checking in terms of type and linker constraints

mentioned, and the ground truth for assessing the performance.

1) Infrastructure and Constraints Checking: To implement

our work, we develop a Eclipse plugin system and integrate with

TypeChef system. The TypeChef system is a variability-

aware parsing tool, which gives a customized compiling service

and variability-aware presentation for code fragments [15].

TypeChef3 is used to provide the constrain checking for our

module systems. Unlike the normal use of TypeChef, which

gives the type error during the checking, in our work, we only

need it to return types required to be resolved at a certain

point.

2) Ground Truth for Performance Assessment: In order to

assess the performance of our work and compare with our tools,

we have to select the systems that have been well-researched

with two kinds of information available publicly: (1) given

our final target is to build a feature model from source base,

the feature model should be available which could be used

to assess whether our approach could extract correct feature

relations. For example, if there is an implies relation from a

feature f to feature f ′, ideally a competitive approach should

give this relation as a part of output; and (2) some information

should be available that tells how code fragments and features

are mapped.

B. Subject Systems

Based on the rule for performance assessment, we carefully

select subject systems from different domains to verify our

approach in multiple dimensions. A special factor to consider is

the specific type of subject system, namely we have to test our

approach using systems from different domains and in different

size scales, including small systems, medium-size systems and

large scale systems. For subject systems, we mainly target on

systems in Java, systems in C and CPP are out of the scope of

this paper, since they use directives to implement variability and

associate with configuration management techniques. Therefore,

following systems were selected for our study.

• Prevayler4. An open-source object persistence library for

Java with 8009 LOC. It is a well recognized product

3TypeChef is designed in C, a Java version of TypeChef’s core function
is implemented as a part of LEADT tool, available at: https://github.com/
ckaestne/LEADT

4Prevayler: available at http://prevayler.org

for product line research [22], [23], although it is not

originally developed as a product line application. It

contains five features: Censor, Gzip,Monitor, Replication,

and Snapshot with a dependency Censor ⇒ Snapshot.
• MobileMedia v8 . Originally developed by University

of Lancester, UK as a product line with 4653 LOC [24].

It contains several features: Photo, Music, SMS Transfer,
Copy Media, Favourites, and Sorting. The dependencies

include: Photo∨Music, SMSTransfer ⇒ Photo and

MediaTransfer ⇔ (SMS Transfer ∨ Copy Media) .

• ArgoUML5 with 120 KLOC, provides modeling support

for UML v1.4 diagrams and supports multiple program-

ming languages. In ArgoUML, following seven features

are selected: Cognitive, Activity Diagram, StateDiagram,

Collaboration Diagram, Sequence Diagram, Use Case
Diagram, Deployment Diagram from an empirical research

[25]. The feature Logging is not covered in our mining

work, as it is not a callable feature for end customers. In

another study [22], a dependency ActivityDiagram⇒
StateDiagram is added. In our experiment, we adopt

this setting.

• Berkeley DB (in Java)6 is a database application with

84KLOC, and 38 features. Berkeley DB could be an

embedded application to other applications and provides a

storage engine. It performs safety transaction and several

useful APIs to cope with IO, logging, memory and so

forth. A full feature list and feature relation is enclosed

in our project webpage7.

C. Tools

We have implemented a prototype of our work and in-

tegrated other relative approaches into an Eclipse plug-in

named LoongFMR. We have released the experimental data,

ground truth, and source code on our project page: http:

//www.chrisyttang.org/loong_fmr/.

VI. EXPERIMENTAL RESULT

A. Relative Approaches

1) ACDC: Algorithm for Comprehension-Driven Clustering

(ACDC) recovers the architecture of system by inspecting

certain patterns that could exist in systems [26]. Specifically,

ACDC contains source file pattern, body-header pattern, leaf
collection and support library pattern, and ordered and limited
subgraph domination. ACDC identifies clusters by using these

patterns with orphan adoption techniques, which originally

proposed in [27].

2) LIMBO: scaLable InforMation BOttleneck (LIMBO)

optimizes the usage of information loss when conducting

clustering on a system. It builds on Information Bottleneck
(IB) framework and could collected relevant information during

clustering [28].

5ArgoUML: available at: http://argouml.tigris.org
6Berkeley DB: http://www.oracle.com/technetwork/database/

database-technologies/berkeleydb/
7LoongFMR: http://www.chrisyttang.org/loong_fmr/

269269269269269269269269

3) ARC: Architecture Recovery using Concern (ARC) as

defined in [29] uses a generative probabilistic model for text

corpora named Latent Dirichlet Allocation (LDA) to retrieve

concerns and identify programming elements belonging to

concerns. It treats the source as a series of documents that

contains various topics and then measures the similarity using

the Jensen-Shannon divergence (Djs).
4) Bunch: Bunch regards the recovery task as an opti-

mization program [30]. It starts with a random partition

and iteratively updates each cluster by optimizing the object

function called Modularization Quality (MQ) until it cannot

find a better solution.
5) W-UE and W-UENM: Weighted Combined Algo-

rithm(WCA) combines hierarchical clusters into larger sets

by computing the inter distance between two possible variants

using Unbiased Ellenberg (UE) and Unbiased Ellenberg-

NM(UENM) distance measurement respectively [31].

B. Metrics
We measure the performance of different approaches by four

aspects. We adopt three metrics from software architecture

recovery: MoJo similarity,architecture-to-architecture measure-
ment and cluster-to-cluster coverage. The runtime performance

returns the execution speed of the algorithm.
1) MoJo Similarity: SimilarMoJo metric [32] gives a

representation of closeness between two architectures with

a percentage. It helps to analyze two different architecture

strategies. SimilarMoJo is defined as:

SimilarMoJo (A,B) =

(
1− MoJo (A,B)

N

)
×100%, (6)

where MoJo(A,B) = min (mno (A,B) ,mno (B,A)) and

mno (A,B) represents the minimum number of Move or Join
operations needed to transform from A to B or vice versa. N
represents the number of units in the system. The algorithm

in [33] gives a way to calculate mno (A,B). Furthermore,

the symbol ∀A in the denominator represents a partition of

A and max (mno (∀A,B)) means the maximal distance from

any partition A to B.

TABLE III
EVALUATED MOJO SIMILARITY MEASURING

Algorithm Prevayler MobileMedia ArgoUML BerkeleyDB
ACDC 83.0 75.0 63.69 83.93
LIMBO 55.56 68.75 52.03 78.31
Bunch 74.07 68.42 63.92 88.77
ARC 59.25 73.43 53.09 84.95
VMS 83.33 71.87 79.78 81.62
W-UE 66.67 78.12 51.66 83.41
W-UENM 68.52 71.87 51.66 82.14

2) Architecture-to-architecture Measurement(a2a): a2a is

developed to overcome the limitation of MoJo measuring

discrepancy of files between the recovered result and ground

truth [34]. a2a measures two architectures, one is the recovered

and another is ground truth by computing:

a2a (Ai, Aj) =

(
1− mto (Ai, Aj)

aco (Ai) + aco (Aj)

)
× 100% (7)

50

60

70

80

90

ACDC LIMBO Bunch ARC VMS W.UE W.UENM
Methods

Sim
ila

rity

Methods

ACDC

LIMBO

Bunch

ARC

VMS

W.UE

W.UENM

Fig. 3. The violin plot for MoJo Similarity

mto (Ai, Aj) = remC (Ai, Aj) + addC (Ai, Aj) +
remE (Ai, Aj) + addE (Ai, Aj) + movE (Ai, Aj) and

aco (Ai) = addC (A,Ai) + addE (A,Ai) + movE (A,Ai),
where the symbol mto (Ai, Aj) is the minimum changes from

architecture Ai to Aj and aco (Ai) represents the total number

of operations from a “null” architecture A into Ai. There are

five operations that could be used to transform an architecture

to another including: additions(addE), removals(remE), and

moves(movE) from one cluster to another.

TABLE IV
EVALUATED PROJECT AND ARCHITECTURE ON A2A MEASURING

Algorithm Prevayler MobileMedia ArgoUML BerkeleyDB
ACDC 21.18 30.31 51.46 17.97
LIMBO 47.19 63.68 47.67 55.57
Bunch 45.07 56.75 49.06 49.08
ARC 49.23 67.39 49.76 63.48
VMS 52.16 67.70 52.87 62.92
W-UE 50.0 73.56 49.90 62.01
W-UENM 50.0 73.56 49.90 61.64

The results shown in Tab.III, Tab.IV, and associate violin

plots, including Fig.3 and Fig.5, indicate that at the system

level8, our VMS approach could reach a competitive result and

more importantly the result is stable comparing to others. From

these two violin plots, we can draw the following conclusions:

(1) the median value from VMS gives a better performance

than others; and (2) from the distribution and range between

first and third quartile, our VMS shows its strength in providing

stable results.

3) Cluster-to-cluster Coverage(c2ccvg): c2ccvg explores the

component-level accuracy and is given as [34]:

c2c (ci, cj) =
|entities (ci) ∩ entities (cj)|

max (|entities (ci)| , |entities (cj)|)
× 100%,

(8)

where ci is a cluster generated by clustering tech-

niques and cj is the cluster from the ground-truth. The

entities(c) shows all candidates in the cluster c. The

architecture coverage c2ccvg is a metric that extend

the clusters overlap as:c2ccvg (c1, c2) = |simC(A1,A2)|
|A2.C| ×

100%, where simC (A1, A2) = {ci|(ci ∈ A1, ∃cj ∈ A2) ∧
(c2c (ci, cj) > thcvg)}. A1 is the recovered architecture; on

8Metrics MoJo and arch2arch give a system-level assessment, and clus-
ter2cluster coverage returns a cluster-level assessment

270270270270270270270270

Fig. 4. The Heat Map for Cluster-to-cluster Coverage

TABLE V
CLUSTER-TO-CLUSTER MEASURING(MAJORITY MATCH(50%), MODERATE MATCH(33%),WEAK MATCH(10%))

Algorithm Prevayler MobileMedia ArgoUML BereleyDB
Major Mod. Weak Major Mod. Weak Major Mod. Weak Major Mod. Weak

ACDC 13.64 18.18 54.55 0.00 0.00 30.00 4.55 4.55 22.73 0.00 0.00 7.32
LIMBO 0.00 0.00 80.00 0.00 0.00 28.57 0.00 0.00 66.67 0.00 0.00 14.63
Bunch 5.26 15.79 47.37 0.00 14.29 42.86 0.00 3.03 21.21 0.00 0.00 9.76
ARC 0.00 0.00 20.00 0.00 14.29 57.14 0.00 0.00 22.22 2.38 7.14 45.24
VMS 16.67 16.67 83.33 0.00 14.29 71.43 0.00 22.23 77.78 2.44 4.88 46.34
W-UE 40.00 40.00 60.00 0.00 28.57 71.43 0.00 0.00 11.11 0.00 4.17 54.17
W-UENM 40.00 40.00 60.00 14.29 14.29 71.43 0.00 0.00 11.11 0.00 0.00 50.00

20

40

60

ACDC LIMBO Bunch ARC VMS W.UE W.UENM
Methods

Sim
ila

rity

Methods

ACDC

LIMBO

Bunch

ARC

VMS

W.UE

W.UENM

Fig. 5. The violin plot for a2a Measurement

the contrast, A2 is architecture from the ground-truth. The

symbol A2.C represents all clusters in A2, and thcvg shows the

threshold that indicates the bottomline for clustering approach

must achieve in order to count for similar clustering when

comparing to A2. The detail performance of our approach and

other relative approaches are shown in Tab.V. In addition, the

heat map in Fig.4 indicates VMS returns considerable results

in terms of weak match(> 10%) and majority match(> 50%).

4) Run-time Performance: Run-time performance explores

the execution time under the same environment. In this paper,

all algorithms are run on a MacOS 10.12 with Intel i5 2.6GHz,

8G 1600 MHz DDR3, and targeting on Eclipse 4.5 with JRE

7.

TABLE VI
RUNTIME PERFORMANCE IN MILLISECOND

Algorithm Prevayler MobileMedia ArgoUML BerkeleyDB
ACDC 665 215 46127 1394
LIMBO 555 165 2629637 1349
Bunch 192 229 25284 258
ARC 2356 3247 139883 6408
VMS 122 313 453278 21847
W-UE 235 67 30309 733
W-UENM 144 50 32054 551

As the runtime performance presented in Tab.VI, a potential

bottleneck for VMS is it requires more resource when pro-

cessing large scale systems, which might due to the conflict

checking and also computing the complicated model (w∗) to

measure module similarity.

VII. DISCUSSION

A. Lessons Learned

In this section, we will describe experience learned from

this study and share several empirical understandings in feature

model building by answering following research questions. By

answering these questions, the strength and potential weakness

of VMS are presented.

RQ1: Is current architecture recovery technique qualified
for constructing feature model?

As the results shown in the previous section, we can conclude

that traditional techniques designed for architecture recovery

cannot meet the need of feature model construction. Another

apparent limitation for other approaches is that they cannot

ensure all programming elements in a cluster are well-typed,

271271271271271271271271

which is solved in our approach. Therefore, our strategy could

be a better choice for product line feature model building.

RQ2: What are the potential limitations for VMS approach?
Although VMS approach returns a competitive result on four

case studies, it still has its limitations. The limitations are two

parts: (1) the first limitation is from runtime performance as we

described in previous section; and (2) another limitation is that it

is still a coarse-granularity approach. Since, after we carefully

check the ground-truth, we found that some programming

elements are shared by different features. This can only be

resolved using a fine-granularity strategy. Whereas, given the

goal of building feature model, a fine-granularity work might

be overfit considering we only need to build a feature model

to provide a raw view of the system, for which our approach

is fully qualified.

B. Threats to Validity

Construct and Internal Validity. The metrics, including

SimilarMoJo, cluster-to-Cluster, and achitecture-to-architecture

are broadly adopted in architecture recovery performance

collection and have been tested on various target systems.

The benchmark are collected from other researchers’ work,

which are theoretically acceptable. Nevertheless, they may be

incorrect as there is a widely recognized truth that there is no

single “correct” architecture.

External Validity. (1) Even the size of our subject systems

includes two small systems (4K, 8KLOC), a medium-size

system (84KLOC) and a large-scale system (120KLOC) , due

to the number of cases, the experimental results are not intend

to be generalized to all systems. This is mainly because we have

to restrict the systems to those with ground truth available; (2)

Further in the assessment, we adopt the common architecture

recovery performance metrics to testify our approach to reduce

the bias of using self-defined approach. Clearly, the correctness

of ground truth can highly influence the performance.

VIII. RELATED WORK

Feature model recovery for product line, technically, is

highly related to software architecture recovery and variability

modeling.

A. Feature Model Recovery Techniques

For feature model recovering, current work mainly focuses on

following directions: (1) recovery feature model by analyzing

all products within the product family [35], [36]. Specifically,

(2) recover the feature model by tracking the version change

[37]; (3) recover the feature model from requirement speci-

fications [38], [39]; and (4) other works [40], [41] requires

multiple input, like source code, requirement specification,

even architecture information, rather than starting from a pure

code base. For example,She’s work [40] build the feature

model by identifying parent candidates for the given feature.

Our approach is different from She’ work in two fold:(1)

She’s work requires a list of feature names with detailed

description; (2) to support the dependencies, it also need

a propositional formula to represent this. Whereas, in our

approach, rather than relying on the feature list, we need the

number of common features and count of optional features. For

dependencies and constraints, we detect and explore these by

analyzing the architecture and building modules. Our approach

differs from these approaches in terms of different input even

if we have the same targets. Our limit our work to Java, since

different languages provide different mechanism for variability

implementation. For example, in C, people prefer preprocessor

and, in C++, template is a widely adopted choice [42].

B. Software Architecture Recovery Techniques

Software Architecture Recovery(SAR) techniques have been

broadly used to rebuild the product architecture by collecting

syntax and structural information from the system [26], [29],

[30], [43], [44]. Granularity. Most architecture recovery

techniques are implemented at a class and file level, which

means they parse a single class file as an unit for recovery

[30], [44], [45]. Methodology. For the target of reconstructing

or learning architecture, some approaches deem it as an

optimization problem [30], [44], [46], in which some objective

functions, like modularity, fan-in, fan-out, are built and the

architecture that possible satisfy and offer maximal or minimal

target values are considered as solutions; some representative

works use searching patterns along with users’ instructions to

find target patterns and rebuild the architecture by sequentially

finding these components [47], [48]. In addition, adopting

clustering algorithms to resolve architecture problem is another

trend, since programming components, like class, with similar

function should be grouped into the same cluster [28], [31].

Another direction to achieve the target is textual information,

namely natural language processing technique, like the strate-

gies shown in [29], [43]. Among all approaches, we mainly

give a comparison with several representative approaches used

in architecture recovery, including ACDC, LIMBO, Bunch,

ARC and W-UE(NM) as the detail shown in section VI.

IX. CONCLUSIONS AND FUTURE WORK

Constructing feature model and modeling variability are

promising and worth investigating in product-line oriented re-

search. In this paper, we proposed an approach on constructing

feature model by investigating variability-aware modules. As

our results suggest, traditional methods used in architecture

recovery could not reach a stable and competitive performance

comparing to our variability-aware approach. In the future,

we will try to extend this work by tracing users’ behaviors

during program execution and build a mapping between users’

behaviors and source code.

REFERENCES

[1] K. Pohl, G. Böckle, and F. v. d. Linden, “Software product line
engineering foundations, principles, and techniques,” 2005, includes
bibliographical references (p. [445]-456) and index.

[2] M. Galster, D. Weyns, D. Tofan, B. Michalik, and P. Avgeriou, “Variability
in software systems-a systematic literature review,” 2013.

[3] C. Krueger, “Eliminating the adoption barrier,” IEEE Softw., vol. 19,
no. 4, pp. 29–31, 2002.

[4] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Clelang-Huang, and
P. Heymans, “Feature model extraction from large collections of informal
product descriptions,” 2013.

272272272272272272272272

[5] Al-Msie’Deen and Ra’Fat, “Mining feature models from the object-
oriented source code of a collection of software product variants,” 2013.

[6] E. J. Chikofsky and J. H. Cross, “Reverse engineering and design
recovery: a taxonomy,” Software, IEEE, vol. 7, no. 1, pp. 13–17, 1990.

[7] T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside, N. Medvidović,
and R. Kroeger, “Comparing software architecture recovery techniques
using accurate dependencies,” pp. 69–78, 2015.

[8] M. P. Robillard, “Topology analysis of software dependencies,” ACM
Trans. Softw. Eng. Methodol., vol. 17, no. 4, pp. 18:1–18:36, Aug. 2008.

[9] M. Petrenko and V. Rajlich, “Variable granularity for improving precision
of impact analysis,” pp. 10–19, 2009.

[10] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke,
“A systematic survey of program comprehension through dynamic
analysis,” Software Engineering, IEEE Transactions on, vol. 35, no. 5,
pp. 684–702, 2009.

[11] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013.

[12] C. Kästner, K. Ostermann, and S. Erdweg, “A variability-aware module
system,” in Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications,
ser. OOPSLA ’12. New York, NY, USA: ACM, 2012, pp. 773–792.
[Online]. Available: http://doi.acm.org/10.1145/2384616.2384673

[13] L. Cardelli, “Program fragments, linking, and modularization,” in
Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’97. New
York, NY, USA: ACM, 1997, pp. 266–277. [Online]. Available:
http://doi.acm.org/10.1145/263699.263735

[14] S. Nadi, T. Berger, C. KÃd’stner, and K. Czarnecki, “Where do
configuration constraints stem from? an extraction approach and an
empirical study,” IEEE Transactions on Software Engineering, vol. 41,
no. 8, pp. 820–841, Aug 2015.

[15] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann,
and T. Berger, “Variability-aware parsing in the presence of lexical
macros and conditional compilation,” in Proceedings of the 2011
ACM International Conference on Object Oriented Programming
Systems Languages and Applications, ser. OOPSLA ’11. New
York, NY, USA: ACM, 2011, pp. 805–824. [Online]. Available:
http://doi.acm.org/10.1145/2048066.2048128

[16] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object
sensitivity for points-to analysis for java,” ACM Trans. Softw. Eng.
Methodol., vol. 14, no. 1, pp. 1–41, Jan. 2005.

[17] C. Kästner, S. Apel, T. Thüm, and G. Saake, “Type checking
annotation-based product lines,” ACM Trans. Softw. Eng. Methodol.,
vol. 21, no. 3, pp. 14:1–14:39, Jul. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2211616.2211617

[18] G. Xu, A. Rountev, and M. Sridharan, “Scaling cfl-reachability-based
points-to analysis using context-sensitive must-not-alias analysis,” in
Proceedings of the 23rd European Conference on ECOOP 2009
— Object-Oriented Programming, ser. Genoa. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 98–122. [Online]. Available: http://dx.doi.org/
10.1007/978-3-642-03013-0_6

[19] E. Walkingshaw, C. Kästner, M. Erwig, S. Apel, and E. Bodden,
“Variational data structures: Exploring tradeoffs in computing with
variability,” in Proceedings of the 2014 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming & Software,
ser. Onward! 2014. New York, NY, USA: ACM, 2014, pp. 213–226.
[Online]. Available: http://doi.acm.org/10.1145/2661136.2661143

[20] M. Erwig and E. Walkingshaw, “The choice calculus: A representation
for software variation,” ACM Trans. Softw. Eng. Methodol., vol. 21,
no. 1, pp. 6:1–6:27, Dec. 2011. [Online]. Available: http://doi.acm.org/
10.1145/2063239.2063245

[21] M. Steyvers and T. Griffiths, “Probabilistic topic models,” Handbook of
latent semantic analysis, vol. 427, no. 7, pp. 424–440, 2007.

[22] M. T. Valente, V. Borges, and L. Passos, “A semi-automatic approach
for extracting software product lines,” IEEE Transactions on Software
Engineering, vol. 38, no. 4, pp. 737–754, July 2012.

[23] J. Liu, D. Batory, and C. Lengauer, “Feature oriented refactoring of
legacy applications,” Shanghai, China, pp. 112–121, 2006.

[24] E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro, U. Kulesza,
A. Garcia, S. Soares, F. Ferrari, S. Khan, F. Castor Filho, and F. Dantas,
“Evolving software product lines with aspects: An empirical study on
design stability,” in Proceedings of the 30th International Conference

on Software Engineering, ser. ICSE ’08. New York, NY, USA: ACM,
2008, pp. 261–270.

[25] M. V. Couto, M. T. Valente, and E. Figueiredo, “Extracting software
product lines: A case study using conditional compilation,” in Software
Maintenance and Reengineering (CSMR), 2011 15th European Confer-
ence on, Conference Proceedings, pp. 191–200.

[26] V. Tzerpos and R. C. Holt, “Acdc: An algorithm for comprehension-driven
clustering,” p. 258, 2000.

[27] V. Tzerpo, “The orphan adoption problem in architecture maintenance,”
in Proceedings of the Fourth Working Conference on Reverse
Engineering (WCRE ’97), ser. WCRE ’97. Washington, DC,
USA: IEEE Computer Society, 1997, pp. 76–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=832304.836986

[28] P. Andritsos and V. Tzerpos, “Information-theoretic software clustering,”
IEEE Transactions on Software Engineering, vol. 31, no. 2, pp. 150–165,
2005.

[29] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Y. Cai,
“Enhancing architectural recovery using concerns,” in Proceedings of
the 2011 26th IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 552–555. [Online]. Available:
http://dx.doi.org/10.1109/ASE.2011.6100123

[30] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner, “Bunch:
a clustering tool for the recovery and maintenance of software system
structures,” in Software Maintenance, 1999. (ICSM ’99) Proceedings.
IEEE International Conference on, 1999, pp. 50–59.

[31] O. Maqbool and H. A. Babri, “The weighted combined algorithm: a
linkage algorithm for software clustering,” in Software Maintenance
and Reengineering, 2004. CSMR 2004. Proceedings. Eighth European
Conference on, March 2004, pp. 15–24.

[32] Z. Wen and V. Tzerpos, “An effectiveness measure for software clustering
algorithms,” in Program Comprehension, 2004. Proceedings. 12th IEEE
International Workshop on, June 2004, pp. 194–203.

[33] W. Zhihua and V. Tzerpos, “An optimal algorithm for mojo distance,”
in Program Comprehension, 2003. 11th IEEE International Workshop
on, May 2003, pp. 227–235.

[34] D. M. Le, P. Behnamghader, J. Garcia, D. Link, A. Shahbazian, and
N. Medvidovic, “An empirical study of architectural change in open-
source software systems,” in Proceedings of the 12th Working Conference
on Mining Software Repositories. IEEE Press, 2015, pp. 235–245.

[35] Y. Xue, “Reengineering legacy software products into software product
line based on automatic variability analysis,” in Proceedings of the 33rd
International Conference on Software Engineering, ser. ICSE ’11. ACM,
2011, pp. 1114–1117.

[36] Y. Yang, X. Peng, and W. Zhao, “Domain feature model recovery from
multiple applications using data access semantics and formal concept
analysis,” in 2009 16th Working Conference on Reverse Engineering.
IEEE, 2009, pp. 215–224.

[37] Y. Xue, Z. Xing, and S. Jarzabek, “Understanding feature evolution in a
family of product variants,” in 2010 17th Working Conference on Reverse
Engineering, 2010, pp. 109–118.

[38] M. G. R. Stoiber, “Modeling and managing tacit product line requirements
knowledge,” in Managing Requirements Knowledge (MARK), 2009
Second International Workshop on, Sept 2009, pp. 60–64.

[39] S. Buhne, K. Lauenroth, and K. Pohl, “Modelling requirements variability
across product lines,” in 13th IEEE International Conference on
Requirements Engineering (RE’05), Aug 2005, pp. 41–50.

[40] S. She, R. Lotufo, T. Berger, A. Wąsowski, and K. Czarnecki,
“Reverse engineering feature models,” in Proceedings of the 33rd
International Conference on Software Engineering, ser. ICSE ’11.
New York, NY, USA: ACM, 2011, pp. 461–470. [Online]. Available:
http://doi.acm.org/10.1145/1985793.1985856

[41] M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien, and P. Lahire,
“Reverse Engineering Architectural Feature Models,” in 5th European
Conference of Software Architecture (ECSA), Springer, Ed., vol. 6983.
Essen, Germany: Springer, Sep. 2011, pp. 220–235. [Online]. Available:
https://hal.inria.fr/inria-00614984

[42] K. Czarnecki and E. Ulrich, Generative Programming: Methods, Tools,
and Applications. Reading, MA, USA: Addison-Wesley, 2000.

[43] A. Corazza, S. D. Martino, V. Maggio, and G. Scanniello, “Investigating
the use of lexical information for software system clustering,” in
Software Maintenance and Reengineering (CSMR), 2011 15th European
Conference on, March 2011, pp. 35–44.

273273273273273273273273

[44] K. Kobayashi, M. Kamimura, K. Kato, K. Yano, and A. Matsuo,
“Feature-gathering dependency-based software clustering using dedication
and modularity,” in Software Maintenance (ICSM), 2012 28th IEEE
International Conference on. IEEE, 2012, pp. 462–471.

[45] S. Ducasse and D. Pollet, “Software architecture reconstruction: A
process-oriented taxonomy,” IEEE Transactions on Software Engineering,
vol. 35, no. 4, pp. 573–591, 2009.

[46] K. Praditwong, M. Harman, and X. Yao, “Software module clustering

as a multi-objective search problem,” IEEE Transactions on Software
Engineering, vol. 37, no. 2, pp. 264–282, March 2011.

[47] S. Kamran, “Alborz: a query-based tool for software architecture
recovery,” in Program Comprehension, 2001. IWPC 2001. Proceedings.
9th International Workshop on, 2001, pp. 115–116.

[48] K. Sartipi, “Software architecture recovery based on pattern matching,”
in Software Maintenance, 2003. ICSM 2003. Proceedings. International
Conference on, Sept 2003, pp. 293–296.

274274274274274274274274

